3D Point Cloud Classification

127 papers with code • 5 benchmarks • 6 datasets

This task has no description! Would you like to contribute one?

Libraries

Use these libraries to find 3D Point Cloud Classification models and implementations
3 papers
89
2 papers
1,669
See all 8 libraries.

Most implemented papers

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

yanx27/Pointnet_Pointnet2_pytorch NeurIPS 2017

By exploiting metric space distances, our network is able to learn local features with increasing contextual scales.

Point Transformer

Pointcept/Pointcept ICCV 2021

For example, on the challenging S3DIS dataset for large-scale semantic scene segmentation, the Point Transformer attains an mIoU of 70. 4% on Area 5, outperforming the strongest prior model by 3. 3 absolute percentage points and crossing the 70% mIoU threshold for the first time.

Dynamic Graph CNN for Learning on Point Clouds

WangYueFt/dgcnn 24 Jan 2018

Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices.

PointCNN: Convolution On $\mathcal{X}$-Transformed Points

yangyanli/PointCNN NeurIPS 2018

The proposed method is a generalization of typical CNNs to feature learning from point clouds, thus we call it PointCNN.

PCT: Point cloud transformer

MenghaoGuo/PCT 17 Dec 2020

It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning.

Perceiver: General Perception with Iterative Attention

deepmind/deepmind-research 4 Mar 2021

The perception models used in deep learning on the other hand are designed for individual modalities, often relying on domain-specific assumptions such as the local grid structures exploited by virtually all existing vision models.

PointConv: Deep Convolutional Networks on 3D Point Clouds

DylanWusee/pointconv CVPR 2019

Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure.

KPConv: Flexible and Deformable Convolution for Point Clouds

HuguesTHOMAS/KPConv ICCV 2019

Furthermore, these locations are continuous in space and can be learned by the network.

Benchmarking Robustness of 3D Point Cloud Recognition Against Common Corruptions

jiachens/ModelNet40-C 28 Jan 2022

Deep neural networks on 3D point cloud data have been widely used in the real world, especially in safety-critical applications.

Relation-Shape Convolutional Neural Network for Point Cloud Analysis

Yochengliu/Relation-Shape-CNN CVPR 2019

Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others.