Attention

General • 125 methods

Attention is a technique for attending to different parts of an input vector to capture long-term dependencies. Within the context of NLP, traditional sequence-to-sequence models compressed the input sequence to a fixed-length context vector, which hindered their ability to remember long inputs such as sentences. In contrast, attention creates shortcuts between the context vector and the entire source input. Below you will find a continuously updating list of attention based building blocks used in deep learning.

Subcategories

Method Year Papers
2017 17290
2017 17245
2019 1324
2019 1323
2017 258
2015 218
2017 214
2014 195
2018 176
2021 162
2017 160
2018 135
2022 112
2014 104
2020 84
2021 81
2020 78
2020 77
2020 71
2020 68
2019 66
2020 65
2018 65
2019 52
2019 47
2021 44
2020 43
2020 37
2018 37
2017 36
2019 36
2015 33
2014 32
2021 32
2020 32
2015 31
2015 24
2018 24
2020 24
2019 22
2022 22
2021 22
2021 21
2019 19
2015 19
2020 19
2018 19
2020 17
2020 17
2018 15
2020 14
2022 13
2020 11
2021 11
2019 11
2017 9
2018 9
2019 9
2023 8
2020 7
2019 7
2021 7
2019 7
2019 7
2020 7
2017 7
2015 6
2019 6
2019 6
2018 6
2019 5
2021 5
2021 4
2018 4
2020 4
2020 4
2021 3
2018 3
2016 3
2020 3
2020 3
2021 3
2021 3
2020 3
2015 3
2018 3
2019 2
2020 2
2018 2
2
2021 2
2020 2
2021 2
2017 2
2021 2
2017 2
2016 2
2021 2
2019 2
2020 2
2021 2
2021 2
2020 1
2020 1
2018 1
2018 1
2020 1
2022 1
2016 1
2022 1
2020 1
2021 1
2021 1
2023 1
2020 1
2021 1
2022 1
2020 1
2019 1
2021 1
2020 1
2019 1
2020 1
2021 1
2020 1
2020 1
2000 0