KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) is one of the most popular datasets for use in mobile robotics and autonomous driving. It consists of hours of traffic scenarios recorded with a variety of sensor modalities, including high-resolution RGB, grayscale stereo cameras, and a 3D laser scanner. Despite its popularity, the dataset itself does not contain ground truth for semantic segmentation. However, various researchers have manually annotated parts of the dataset to fit their necessities. Álvarez et al. generated ground truth for 323 images from the road detection challenge with three classes: road, vertical, and sky. Zhang et al. annotated 252 (140 for training and 112 for testing) acquisitions – RGB and Velodyne scans – from the tracking challenge for ten object categories: building, sky, road, vegetation, sidewalk, car, pedestrian, cyclist, sign/pole, and fence. Ros et al. labeled 170 training images and 46 testing images (from the visual odome
3,219 PAPERS • 141 BENCHMARKS
The nuScenes dataset is a large-scale autonomous driving dataset. The dataset has 3D bounding boxes for 1000 scenes collected in Boston and Singapore. Each scene is 20 seconds long and annotated at 2Hz. This results in a total of 28130 samples for training, 6019 samples for validation and 6008 samples for testing. The dataset has the full autonomous vehicle data suite: 32-beam LiDAR, 6 cameras and radars with complete 360° coverage. The 3D object detection challenge evaluates the performance on 10 classes: cars, trucks, buses, trailers, construction vehicles, pedestrians, motorcycles, bicycles, traffic cones and barriers.
1,549 PAPERS • 20 BENCHMARKS
The Waymo Open Dataset is comprised of high resolution sensor data collected by autonomous vehicles operated by the Waymo Driver in a wide variety of conditions.
373 PAPERS • 12 BENCHMARKS
Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle technology. Image based benchmark datasets have driven development in computer vision tasks such as object detection, tracking and segmentation of agents in the environment. Most autonomous vehicles, however, carry a combination of cameras and range sensors such as lidar and radar. As machine learning based methods for detection and tracking become more prevalent, there is a need to train and evaluate such methods on datasets containing range sensor data along with images. In this work we present nuTonomy scenes (nuScenes), the first dataset to carry the full autonomous vehicle sensor suite: 6 cameras, 5 radars and 1 lidar, all with full 360 degree field of view. nuScenes comprises 1000 scenes, each 20s long and fully annotated with 3D bounding boxes for 23 classes and 8 attributes. It has 7x as many annotations and 100x as many images as the pioneering KITTI dataset. We define novel 3D detecti
9 PAPERS • 2 BENCHMARKS
MOTFront provides photo-realistic RGB-D images with their corresponding instance segmentation masks, class labels, 2D & 3D bounding boxes, 3D geometry, 3D poses and camera parameters. The MOTFront dataset comprises 2,381 unique indoor sequences with a total of 60,000 images and is based on the 3D-FRONT dataset.
2 PAPERS • NO BENCHMARKS YET
3D-ZeF dataset consists of eight sequences with a duration between 15-120 seconds and 1-10 free moving zebrafish. The videos have been annotated with a total of 86,400 points and bounding boxes.
1 PAPER • NO BENCHMARKS YET
Existing image/video datasets for cattle behavior recognition are mostly small, lack well-defined labels, or are collected in unrealistic controlled environments. This limits the utility of machine learning (ML) models learned from them. Therefore, we introduce a new dataset, called Cattle Visual Behaviors (CVB), that consists of 502 video clips, each fifteen seconds long, captured in natural lighting conditions, and annotated with eleven visually perceptible behaviors of grazing cattle. By creating and sharing CVB, our aim is to develop improved models capable of recognizing all important cattle behaviors accurately and to assist other researchers and practitioners in developing and evaluating new ML models for cattle behavior classification using video data. The dataset is presented in the form of following three sub-directories. 1. raw_frames: contains 450 frames in each sub folder representing a 15 second video taken at a frame rate of 30 FPS. 2. annotations: contains the json file