Spine or vertebral segmentation is a crucial step in all applications regarding automated quantification of spinal morphology and pathology. With the advent of deep learning, for such a task on computed tomography (CT) scans, a big and varied data is a primary sought-after resource. However, a large-scale, public dataset is currently unavailable.
26 PAPERS • NO BENCHMARKS YET
The 2021 Kidney and Kidney Tumor Segmentation challenge (abbreviated KiTS21) is a competition in which teams compete to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy.
7 PAPERS • 1 BENCHMARK
The SKM-TEA dataset pairs raw quantitative knee MRI (qMRI) data, image data, and dense labels of tissues and pathology for end-to-end exploration and evaluation of the MR imaging pipeline. This 1.6TB dataset consists of raw-data measurements of ~25,000 slices (155 patients) of anonymized patient knee MRI scans, the corresponding scanner-generated DICOM images, manual segmentations of four tissues, and bounding box annotations for sixteen clinically relevant pathologies.
7 PAPERS • NO BENCHMARKS YET
Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in rehabilitation research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires significant neuroanatomical expertise. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N=1271), a larger dataset of T1w stroke MRIs and manually segmented lesion masks that includes training (public. n=655), test (masks hidden, n=300), and generalizability (completely hidden, n=316) data. Algorithm development using this larger sample should lead to more robust solutions, and the hidden test and generalizability datasets allow for unbiased performance evaluation
6 PAPERS • 1 BENCHMARK
Cancer in the region of the head and neck (HaN) is one of the most prominent cancers, for which radiotherapy represents an important treatment modality that aims to deliver a high radiation dose to the targeted cancerous cells while sparing the nearby healthy organs-at-risk (OARs). A precise three-dimensional spatial description, i.e. segmentation, of the target volumes as well as OARs is required for optimal radiation dose distribution calculation, which is primarily performed using computed tomography (CT) images. However, the HaN region contains many OARs that are poorly visible in CT, but better visible in magnetic resonance (MR) images. Although attempts have been made towards the segmentation of OARs from MR images, so far there has been no evaluation of the impact the combined analysis of CT and MR images has on the segmentation of OARs in the HaN region. The Head and Neck Organ-at-Risk Multi-Modal Segmentation Challenge aims to promote the development of new and application of
5 PAPERS • NO BENCHMARKS YET
The RAD-ChestCT dataset is a large medical imaging dataset developed by Duke MD/PhD Rachel Draelos during her Computer Science PhD supervised by Lawrence Carin. The full dataset includes 35,747 chest CT scans from 19,661 adult patients. The public Zenodo repository contains an initial release of 3,630 chest CT scans, approximately 10% of the dataset. This dataset is of significant interest to the machine learning and medical imaging research communities.
EPISURG is a clinical dataset of $T_1$-weighted magnetic resonance images (MRI) from 430 epileptic patients who underwent resective brain surgery at the National Hospital of Neurology and Neurosurgery (Queen Square, London, United Kingdom) between 1990 and 2018.
2 PAPERS • NO BENCHMARKS YET
Intracranial hemorrhage (ICH) is a pathological condition characterized by bleeding inside the skull or brain, which can be attributed to various factors. Identifying, localizing and quantifying ICH has important clinical implications, in a bleed-dependent manner. While deep learning techniques are widely used in medical image segmentation and have been applied to the ICH segmentation task, existing public ICH datasets do not support the multi-class segmentation problem. To address this, we develop the Brain Hemorrhage Segmentation Dataset (BHSD), which provides a 3D multi-class ICH dataset containing 192 volumes with pixel-level annotations and 2200 volumes with slice-level annotations across five categories of ICH. To demonstrate the utility of the dataset, we formulate a series of supervised and semi-supervised ICH segmentation tasks. We provide experimental results with state-of-the-art models as reference benchmarks for further model developments and evaluations on this dataset.
1 PAPER • NO BENCHMARKS YET
1、 Competition name: