The IMDb Movie Reviews dataset is a binary sentiment analysis dataset consisting of 50,000 reviews from the Internet Movie Database (IMDb) labeled as positive or negative. The dataset contains an even number of positive and negative reviews. Only highly polarizing reviews are considered. A negative review has a score ≤ 4 out of 10, and a positive review has a score ≥ 7 out of 10. No more than 30 reviews are included per movie. The dataset contains additional unlabeled data.
1,577 PAPERS • 11 BENCHMARKS
The PubMed dataset consists of 19717 scientific publications from PubMed database pertaining to diabetes classified into one of three classes. The citation network consists of 44338 links. Each publication in the dataset is described by a TF/IDF weighted word vector from a dictionary which consists of 500 unique words.
1,063 PAPERS • 24 BENCHMARKS
The English Penn Treebank (PTB) corpus, and in particular the section of the corpus corresponding to the articles of Wall Street Journal (WSJ), is one of the most known and used corpus for the evaluation of models for sequence labelling. The task consists of annotating each word with its Part-of-Speech tag. In the most common split of this corpus, sections from 0 to 18 are used for training (38 219 sentences, 912 344 tokens), sections from 19 to 21 are used for validation (5 527 sentences, 131 768 tokens), and sections from 22 to 24 are used for testing (5 462 sentences, 129 654 tokens). The corpus is also commonly used for character-level and word-level Language Modelling.
977 PAPERS • 10 BENCHMARKS
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike License.
808 PAPERS • 3 BENCHMARKS
C4 is a colossal, cleaned version of Common Crawl's web crawl corpus. It was based on Common Crawl dataset: https://commoncrawl.org. It was used to train the T5 text-to-text Transformer models.
633 PAPERS • 1 BENCHMARK
490 PAPERS • 2 BENCHMARKS
BookCorpus is a large collection of free novel books written by unpublished authors, which contains 11,038 books (around 74M sentences and 1G words) of 16 different sub-genres (e.g., Romance, Historical, Adventure, etc.).
322 PAPERS • 1 BENCHMARK
The Pile is a 825 GiB diverse, open source language modelling data set that consists of 22 smaller, high-quality datasets combined together.
307 PAPERS • 1 BENCHMARK
The Beyond the Imitation Game Benchmark (BIG-bench) is a collaborative benchmark intended to probe large language models and extrapolate their future capabilities. Big-bench include more than 200 tasks.
222 PAPERS • 134 BENCHMARKS
LAnguage Model Analysis (LAMA) consists of a set of knowledge sources, each comprised of a set of facts. LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models.
205 PAPERS • NO BENCHMARKS YET
OpenSubtitles is collection of multilingual parallel corpora. The dataset is compiled from a large database of movie and TV subtitles and includes a total of 1689 bitexts spanning 2.6 billion sentences across 60 languages.
204 PAPERS • 2 BENCHMARKS
The LAMBADA (LAnguage Modeling Broadened to Account for Discourse Aspects) benchmark is an open-ended cloze task which consists of about 10,000 passages from BooksCorpus where a missing target word is predicted in the last sentence of each passage. The missing word is constrained to always be the last word of the last sentence and there are no candidate words to choose from. Examples were filtered by humans to ensure they were possible to guess given the context, i.e., the sentences in the passage leading up to the last sentence. Examples were further filtered to ensure that missing words could not be guessed without the context, ensuring that models attempting the dataset would need to reason over the entire paragraph to answer questions.
182 PAPERS • 1 BENCHMARK
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently, the dataset is entirely parallel across 11 languages.
170 PAPERS • 1 BENCHMARK
WiC is a benchmark for the evaluation of context-sensitive word embeddings. WiC is framed as a binary classification task. Each instance in WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not. In fact, the dataset can also be viewed as an application of Word Sense Disambiguation in practise.
168 PAPERS • NO BENCHMARKS YET
Libri-Light is a collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio.
164 PAPERS • 2 BENCHMARKS
AISHELL-1 is a corpus for speech recognition research and building speech recognition systems for Mandarin.
163 PAPERS • 1 BENCHMARK
ATOMIC is an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment").
162 PAPERS • NO BENCHMARKS YET
Dataset of hate speech annotated on Internet forum posts in English at sentence-level. The source forum in Stormfront, a large online community of white nacionalists. A total of 10,568 sentence have been been extracted from Stormfront and classified as conveying hate speech or not.
161 PAPERS • 1 BENCHMARK
PAWS-X contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All translated pairs are sourced from examples in PAWS-Wiki.
160 PAPERS • 2 BENCHMARKS
The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts.
143 PAPERS • 2 BENCHMARKS
The OLID is a hierarchical dataset to identify the type and the target of offensive texts in social media. The dataset is collected on Twitter and publicly available. There are 14,100 tweets in total, in which 13,240 are in the training set, and 860 are in the test set. For each tweet, there are three levels of labels: (A) Offensive/Not-Offensive, (B) Targeted-Insult/Untargeted, (C) Individual/Group/Other. The relationship between them is hierarchical. If a tweet is offensive, it can have a target or no target. If it is offensive to a specific target, the target can be an individual, a group, or some other objects. This dataset is used in the OffensEval-2019 competition in SemEval-2019.
141 PAPERS • 1 BENCHMARK
Long-range arena (LRA) is an effort toward systematic evaluation of efficient transformer models. The project aims at establishing benchmark tasks/datasets using which we can evaluate transformer-based models in a systematic way, by assessing their generalization power, computational efficiency, memory foot-print, etc. Long-Range Arena is specifically focused on evaluating model quality under long-context scenarios. The benchmark is a suite of tasks consisting of sequences ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and visual-spatial reasoning.
140 PAPERS • 1 BENCHMARK
Clotho is an audio captioning dataset, consisting of 4981 audio samples, and each audio sample has five captions (a total of 24 905 captions). Audio samples are of 15 to 30 s duration and captions are eight to 20 words long.
137 PAPERS • 5 BENCHMARKS
The One Billion Word dataset is a dataset for language modeling. The training/held-out data was produced from the WMT 2011 News Crawl data using a combination of Bash shell and Perl scripts.
134 PAPERS • 2 BENCHMARKS
OpenWebText is an open-source recreation of the WebText corpus. The text is web content extracted from URLs shared on Reddit with at least three upvotes. (38GB).
131 PAPERS • NO BENCHMARKS YET
The BLUE benchmark consists of five different biomedicine text-mining tasks with ten corpora. These tasks cover a diverse range of text genres (biomedical literature and clinical notes), dataset sizes, and degrees of difficulty and, more importantly, highlight common biomedicine text-mining challenges.
122 PAPERS • NO BENCHMARKS YET
ELI5 is a dataset for long-form question answering. It contains 270K complex, diverse questions that require explanatory multi-sentence answers. Web search results are used as evidence documents to answer each question.
120 PAPERS • 1 BENCHMARK
A dataset of large scale alignments between Wikipedia abstracts and Wikidata triples. T-REx consists of 11 million triples aligned with 3.09 million Wikipedia abstracts (6.2 million sentences).
107 PAPERS • 2 BENCHMARKS
This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages. This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository.
96 PAPERS • NO BENCHMARKS YET
CLUE is a Chinese Language Understanding Evaluation benchmark. It consists of different NLU datasets. It is a community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text.
95 PAPERS • 8 BENCHMARKS
WritingPrompts is a large dataset of 300K human-written stories paired with writing prompts from an online forum.
93 PAPERS • 1 BENCHMARK
A new open-vocabulary language modelling benchmark derived from books.
87 PAPERS • 1 BENCHMARK
KP20k is a large-scale scholarly articles dataset with 528K articles for training, 20K articles for validation and 20K articles for testing.
79 PAPERS • 3 BENCHMARKS
BLiMP is a challenge set for evaluating what language models (LMs) know about major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each containing 1000 minimal pairs isolating specific contrasts in syntax, morphology, or semantics. The data is automatically generated according to expert-crafted grammars. Aggregate human agreement with the labels is 96.4%.
78 PAPERS • NO BENCHMARKS YET
RealNews is a large corpus of news articles from Common Crawl. Data is scraped from Common Crawl, limited to the 5000 news domains indexed by Google News. The authors used the Newspaper Python library to extract the body and metadata from each article. News from Common Crawl dumps from December 2016 through March 2019 were used as training data; articles published in April 2019 from the April 2019 dump were used for evaluation. After deduplication, RealNews is 120 gigabytes without compression.
75 PAPERS • NO BENCHMARKS YET
TweetEval introduces an evaluation framework consisting of seven heterogeneous Twitter-specific classification tasks.
71 PAPERS • 2 BENCHMARKS
The Semantic Scholar corpus (S2) is composed of titles from scientific papers published in machine learning conferences and journals from 1985 to 2017, split by year (33 timesteps).
70 PAPERS • NO BENCHMARKS YET
End-to-End NLG Challenge (E2E) aims to assess whether recent end-to-end NLG systems can generate more complex output by learning from datasets containing higher lexical richness, syntactic complexity and diverse discourse phenomena.
68 PAPERS • 4 BENCHMARKS
The MetaQA dataset consists of a movie ontology derived from the WikiMovies Dataset and three sets of question-answer pairs written in natural language: 1-hop, 2-hop, and 3-hop queries.
67 PAPERS • 1 BENCHMARK
CMRC is a dataset is annotated by human experts with near 20,000 questions as well as a challenging set which is composed of the questions that need reasoning over multiple clues.
62 PAPERS • 11 BENCHMARKS
OSCAR or Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. The dataset used for training multilingual models such as BART incorporates 138 GB of text.
55 PAPERS • NO BENCHMARKS YET
The TED-LIUM corpus consists of English-language TED talks. It includes transcriptions of these talks. The audio is sampled at 16kHz. The dataset spans a range of 118 to 452 hours of transcribed speech data.
54 PAPERS • 2 BENCHMARKS
CMRC 2018 is a dataset for Chinese Machine Reading Comprehension. Specifically, it is a span-extraction reading comprehension dataset that is similar to SQuAD.
46 PAPERS • 7 BENCHMARKS
Jericho is a learning environment for man-made Interactive Fiction (IF) games.
46 PAPERS • NO BENCHMARKS YET
emrQA has 1 million question-logical form and 400,000+ questionanswer evidence pairs.
Social Interaction QA (SIQA) is a question-answering benchmark for testing social commonsense intelligence. Contrary to many prior benchmarks that focus on physical or taxonomic knowledge, Social IQa focuses on reasoning about people’s actions and their social implications. For example, given an action like "Jesse saw a concert" and a question like "Why did Jesse do this?", humans can easily infer that Jesse wanted "to see their favorite performer" or "to enjoy the music", and not "to see what's happening inside" or "to see if it works". The actions in Social IQa span a wide variety of social situations, and answer candidates contain both human-curated answers and adversarially-filtered machine-generated candidates. Social IQa contains over 37,000 QA pairs for evaluating models’ abilities to reason about the social implications of everyday events and situations.
44 PAPERS • 1 BENCHMARK
EmotionLines contains a total of 29245 labeled utterances from 2000 dialogues. Each utterance in dialogues is labeled with one of seven emotions, six Ekman’s basic emotions plus the neutral emotion. Each labeling was accomplished by 5 workers, and for each utterance in a label, the emotion category with the highest votes was set as the label of the utterance. Those utterances voted as more than two different emotions were put into the non-neutral category. Therefore the dataset has a total of 8 types of emotion labels, anger, disgust, fear, happiness, sadness, surprise, neutral, and non-neutral.
42 PAPERS • 1 BENCHMARK
C3 is a free-form multiple-Choice Chinese machine reading Comprehension dataset.
41 PAPERS • 3 BENCHMARKS