The GOT-10k dataset contains more than 10,000 video segments of real-world moving objects and over 1.5 million manually labelled bounding boxes. The dataset contains more than 560 classes of real-world moving objects and 80+ classes of motion patterns.
203 PAPERS • 2 BENCHMARKS
Rendered synthetically using a library of standard 3D objects, and tests the ability to recognize compositions of object movements that require long-term reasoning.
47 PAPERS • 3 BENCHMARKS
A novel large-scale corpus of manual annotations for the SoccerNet video dataset, along with open challenges to encourage more research in soccer understanding and broadcast production.
45 PAPERS • 7 BENCHMARKS
The Visual Object Tracking (VOT) dataset is a collection of video sequences used for evaluating and benchmarking visual object tracking algorithms. It provides a standardized platform for researchers and practitioners to assess the performance of different tracking methods.
30 PAPERS • 7 BENCHMARKS
The dataset comprises 25 short sequences showing various objects in challenging backgrounds. Eight sequences are from the VOT2013 challenge (bolt, bicycle, david, diving, gymnastics, hand, sunshade, woman). The new sequences show complementary objects and backgrounds, for example a fish underwater or a surfer riding a big wave. The sequences were chosen from a large pool of sequences using a methodology based on clustering visual features of object and background so that those 25 sequences sample evenly well the existing pool.
12 PAPERS • 1 BENCHMARK
BL30K is a synthetic dataset rendered using Blender with ShapeNet's data. We break the dataset into six segments, each with approximately 5K videos. The videos are organized in a similar format as DAVIS and YouTubeVOS, so dataloaders for those datasets can be used directly. Each video is 160 frames long, and each frame has a resolution of 768*512. There are 3-5 objects per video, and each object has a random smooth trajectory -- we tried to optimize the trajectories in a greedy fashion to minimize object intersection (not guaranteed), with occlusions still possible (happen a lot in reality). See MiVOS for details.
11 PAPERS • NO BENCHMARKS YET
TREK-150 is a benchmark dataset for object tracking in First Person Vision (FPV) videos composed of 150 densely annotated video sequences.
7 PAPERS • NO BENCHMARKS YET
VideoCube is a high-quality and large-scale benchmark to create a challenging real-world experimental environment for Global Instance Tracking (GIT). MGIT is a high-quality and multi-modal benchmark based on VideoCube-Tiny to fully represent the complex spatio-temporal and causal relationships coupled in longer narrative content.
5 PAPERS • NO BENCHMARKS YET
The evaluation of object detection models is usually performed by optimizing a single metric, e.g. mAP, on a fixed set of datasets, e.g. Microsoft COCO and Pascal VOC. Due to image retrieval and annotation costs, these datasets consist largely of images found on the web and do not represent many real-life domains that are being modelled in practice, e.g. satellite, microscopic and gaming, making it difficult to assert the degree of generalization learned by the model.
4 PAPERS • 1 BENCHMARK
SOTVerse is a user-defined task space of single object tracking. It allows users to customize SOT tasks according to their research purposes, which on the one hand makes research more targeted, and on the other hand can significantly improve the efficiency of research.
1 PAPER • NO BENCHMARKS YET
VISEM-Tracking is a dataset consisting of 20 video recordings of 30s of spermatozoa with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. It is an extension of the previously published VISEM dataset. In addition to the annotated data, unlabeled video clips are provided for easy-to-use access and analysis of the data.