The Medical Segmentation Decathlon is a collection of medical image segmentation datasets. It contains a total of 2,633 three-dimensional images collected across multiple anatomies of interest, multiple modalities and multiple sources. Specifically, it contains data for the following body organs or parts: Brain, Heart, Liver, Hippocampus, Prostate, Lung, Pancreas, Hepatic Vessel, Spleen and Colon.
79 PAPERS • 1 BENCHMARK
Visible-infrared Paired Dataset for Low-light Vision 30976 images (15488 pairs) 24 dark scenes, 2 daytime scenes Support for image-to-image translation (visible to infrared, or infrared to visible), visible and infrared image fusion, low-light pedestrian detection, and infrared pedestrian detection (The original image and video pairs (before registration) of LLVIP are also released!)
49 PAPERS • 6 BENCHMARKS
Learn2Reg is a dataset for medical image registration. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation.
26 PAPERS • 2 BENCHMARKS
SegTHOR (Segmentation of THoracic Organs at Risk) is a dataset dedicated to the segmentation of organs at risk (OARs) in the thorax, i.e. the organs surrounding the tumour that must be preserved from irradiations during radiotherapy. In this dataset, the OARs are the heart, the trachea, the aorta and the esophagus, which have varying spatial and appearance characteristics. The dataset includes 60 3D CT scans, divided into a training set of 40 and a test set of 20 patients, where the OARs have been contoured manually by an experienced radiotherapist.
22 PAPERS • NO BENCHMARKS YET
UDIS-D is a large image dataset for image stitching or image registration. It contains different overlap rates, varying degrees of parallax, and variable scenes such as indoor, outdoor, night, dark, snow, and zooming.
9 PAPERS • NO BENCHMARKS YET
Fundus Image Registration Dataset (FIRE) is a dataset consisting of 129 retinal images forming 134 image pairs. These image pairs are split into 3 different categories depending on their characteristics. The images were acquired with a Nidek AFC-210 fundus camera, which acquires images with a resolution of 2912x2912 pixels and a FOV of 45° both in the x and y dimensions. Images were acquired at the Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki from 39 patients.
4 PAPERS • 1 BENCHMARK
ALTO is a vision-focused dataset for the development and benchmarking of Visual Place Recognition and Localization methods for Unmanned Aerial Vehicles. The dataset is composed of two long (approximately 150km and 260km) trajectories flown by a helicopter over Ohio and Pennsylvania, and it includes high precision GPS-INS ground truth location data, high precision accelerometer readings, laser altimeter readings, and RGB downward facing camera imagery.The dataset also comes with reference imagery over the flight paths, which makes this dataset suitable for VPR benchmarking and other tasks common in Localization, such as image registration and visual odometry.
3 PAPERS • NO BENCHMARKS YET
Inspiratory and exipratory breath-hold CT image pairs acquired from the National Heart Lung Blood Institute COPDgene study archive.
3 PAPERS • 1 BENCHMARK
Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge. Through FetReg2021 challenge, we released the first large-scale multi-centre dataset of fetoscopy laser photocoagulation procedure. The dataset contains 2,718 pixel-wise annotated images (for background, vessel, fetus, tool classes) from 24 different in vivo TTTS fetoscopic surgeries and 24 unannotated video clips video clips containing 9,616 frames for training and testing. The dataset is useful for the development of generalized and robust semantic segmentation and video mosaicking algorithms for long duration fetoscopy videos.
2 PAPERS • NO BENCHMARKS YET
The fetoscopy placenta dataset is associated with our MICCAI2020 publication titled “Deep Placental Vessel Segmentation for Fetoscopic Mosaicking”. The dataset contains 483 frames with ground-truth vessel segmentation annotations taken from six different in vivo fetoscopic procedure videos. The dataset also includes six unannotated in vivo continuous fetoscopic video clips (950 frames) with predicted vessel segmentation maps obtained from the leave-one-out cross-validation of our method.
The Sentinel-2 satellite carries 12 CMOS detectors for the VNIR bands, with adjacent detectors having overlapping fields of view that result in overlapping regions in level-1 B (L1B) images. This dataset includes 3740 pairs of overlapping image crops extracted from two L1B products. Each crop has a height of around 400 pixels and a variable width that depends on the overlap width between detectors for RGBN bands, typically around 120-200 pixels. In addition to detector parallax, there is also cross-band parallax for each detector, resulting in shifts between bands. Pre-registration is performed for both cross-band and cross-detector parallax, with a precision of up to a few pixels (typically less than 10 pixels).
1 PAPER • NO BENCHMARKS YET