The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike License.
808 PAPERS • 3 BENCHMARKS
The Universal Dependencies (UD) project seeks to develop cross-linguistically consistent treebank annotation of morphology and syntax for multiple languages. The first version of the dataset was released in 2015 and consisted of 10 treebanks over 10 languages. Version 2.7 released in 2020 consists of 183 treebanks over 104 languages. The annotation consists of UPOS (universal part-of-speech tags), XPOS (language-specific part-of-speech tags), Feats (universal morphological features), Lemmas, dependency heads and universal dependency labels.
505 PAPERS • 12 BENCHMARKS
Common Voice is an audio dataset that consists of a unique MP3 and corresponding text file. There are 9,283 recorded hours in the dataset. The dataset also includes demographic metadata like age, sex, and accent. The dataset consists of 7,335 validated hours in 60 languages.
314 PAPERS • 164 BENCHMARKS
A corpus of parallel text in 21 European languages from the proceedings of the European Parliament.
125 PAPERS • NO BENCHMARKS YET
This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages. This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository.
96 PAPERS • NO BENCHMARKS YET
WikiANN, also known as PAN-X, is a multilingual named entity recognition dataset. It consists of Wikipedia articles that have been annotated with LOC (location), PER (person), and ORG (organization) tags in the IOB2 format¹². This dataset serves as a valuable resource for training and evaluating named entity recognition models across various languages.
57 PAPERS • 3 BENCHMARKS
OSCAR or Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. The dataset used for training multilingual models such as BART incorporates 138 GB of text.
55 PAPERS • NO BENCHMARKS YET
Multilingual Knowledge Questions and Answers (MKQA) is an open-domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total). The goal of this dataset is to provide a challenging benchmark for question answering quality across a wide set of languages. Answers are based on a language-independent data representation, making results comparable across languages and independent of language-specific passages. With 26 languages, this dataset supplies the widest range of languages to-date for evaluating question answering.
37 PAPERS • NO BENCHMARKS YET
CoVoST is a large-scale multilingual speech-to-text translation corpus. Its latest 2nd version covers translations from 21 languages into English and from English into 15 languages. It has total 2880 hours of speech and is diversified with 78K speakers and 66 accents.
32 PAPERS • NO BENCHMARKS YET
XGLUE is an evaluation benchmark XGLUE,which is composed of 11 tasks that span 19 languages. For each task, the training data is only available in English. This means that to succeed at XGLUE, a model must have a strong zero-shot cross-lingual transfer capability to learn from the English data of a specific task and transfer what it learned to other languages. Comparing to its concurrent work XTREME, XGLUE has two characteristics: First, it includes cross-lingual NLU and cross-lingual NLG tasks at the same time; Second, besides including 5 existing cross-lingual tasks (i.e. NER, POS, MLQA, PAWS-X and XNLI), XGLUE selects 6 new tasks from Bing scenarios as well, including News Classification (NC), Query-Ad Matching (QADSM), Web Page Ranking (WPR), QA Matching (QAM), Question Generation (QG) and News Title Generation (NTG). Such diversities of languages, tasks and task origin provide a comprehensive benchmark for quantifying the quality of a pre-trained model on cross-lingual natural lan
20 PAPERS • 2 BENCHMARKS
CVSS is a massively multilingual-to-English speech to speech translation (S2ST) corpus, covering sentence-level parallel S2ST pairs from 21 languages into English. CVSS is derived from the Common Voice speech corpus and the CoVoST 2 speech-to-text translation (ST) corpus, by synthesizing the translation text from CoVoST 2 into speech using state-of-the-art TTS systems
18 PAPERS • 1 BENCHMARK
Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. This dataset enables the evaluation of mono- and multi-lingual models in high-, medium-, and low-resource languages. Each question has four multiple-choice answers and is linked to a short passage from the FLORES-200 dataset. The human annotation procedure was carefully curated to create questions that discriminate between different levels of generalizable language comprehension and is reinforced by extensive quality checks. While all questions directly relate to the passage, the English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. Belebele opens up new avenues for evaluating and analyzing the multilingual abilities of language models and NLP systems.
17 PAPERS • NO BENCHMARKS YET
Opusparcus is a paraphrase corpus for six European languages: German, English, Finnish, French, Russian, and Swedish. The paraphrases are extracted from the OpenSubtitles2016 corpus, which contains subtitles from movies and TV shows.
15 PAPERS • NO BENCHMARKS YET
license: apache-2.0 tags: human-feedback size_categories: 100K<n<1M pretty_name: OpenAssistant Conversations
14 PAPERS • NO BENCHMARKS YET
MultiEURLEX is a multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. The dataset covers 23 official EU languages from 7 language families.
9 PAPERS • NO BENCHMARKS YET
DaLAJ 1.0, a dataset for Linguistic Acceptability Judgments for Swedish, comprising 9,596 sentences in its first version; and the initial experiment using it for the binary classification task. DaLAJ is based on the SweLL second language learner data, consisting of essays at different levels of proficiency.
5 PAPERS • 1 BENCHMARK
EUR-Lex-Sum is a dataset for cross-lingual summarization. It is based on manually curated document summaries of legal acts from the European Union law platform. Documents and their respective summaries exist as crosslingual paragraph-aligned data in several of the 24 official European languages, enabling access to various cross-lingual and lower-resourced summarization setups. The dataset contains up to 1,500 document/summary pairs per language, including a subset of 375 cross-lingually aligned legal acts with texts available in all 24 languages.
5 PAPERS • NO BENCHMARKS YET
GeoCoV19 is a large-scale Twitter dataset containing more than 524 million multilingual tweets. The dataset contains around 378K geotagged tweets and 5.4 million tweets with Place information. The annotations include toponyms from the user location field and tweet content and resolve them to geolocations such as country, state, or city level. In this case, 297 million tweets are annotated with geolocation using the user location field and 452 million tweets using tweet content.
3 PAPERS • NO BENCHMARKS YET
MRS, a multilingual reply suggestion dataset with ten languages. MRS can be used to compare two families of models: 1) retrieval models that select the reply from a fixed set and 2) generation models that produce the reply from scratch. Therefore, MRS complements existing cross-lingual generalization benchmarks that focus on classification and sequence labeling tasks.
Digitally Generated Numerals (DIGITal) Description The Digitally Generated Numerals (DIGITal) dataset consists of 100,000 image pairs representing digits from 0 to 9. These image pairs include both low and high-quality versions, with a resolution of 128x128 pixels.
1 PAPER • NO BENCHMARKS YET
Automatic language identification is a challenging problem. Discriminating between closely related languages is especially difficult. This paper presents a machine-learning approach for automatic language identification for the Nordic languages, which often suffer miscategorization by existing state-of-the-art tools. Concretely we will focus on discrimination between six Nordic languages: Danish, Swedish, Norwegian (Nynorsk), Norwegian (Bokmål), Faroese, and Icelandic. This is the data for the tasks. Two variants are provided: 10K and 50K, withholding 10,000 and 50,000 examples for each language respectively.
1 PAPER • 1 BENCHMARK
UNER v1 adds an NER annotation layer to 18 datasets (primarily treebanks from UD) and covers 12 geneologically and ty- pologically diverse languages: Cebuano, Danish, German, English, Croatian, Portuguese, Russian, Slovak, Serbian, Swedish, Tagalog, and Chinese4. Overall, UNER v1 contains nine full datasets with training, development, and test splits over eight languages, three evaluation sets for lower-resource languages (TL and CEB), and a parallel evaluation benchmark spanning six languages.
1 PAPER • 31 BENCHMARKS
This is a new image-based handwritten historical digit dataset named ARDIS (Arkiv Digital Sweden). The images in ARDIS dataset are extracted from 15.000 Swedish church records which were written by different priests with various handwriting styles in the nineteenth and twentieth centuries. The constructed dataset consists of three single digit datasets and one digit strings dataset. The digit strings dataset includes 10.000 samples in Red-Green-Blue (RGB) color space, whereas, the other datasets contain 7.600 single digit images in different color spaces.
0 PAPER • NO BENCHMARKS YET