The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.
10,147 PAPERS • 92 BENCHMARKS
The MPII Human Pose Dataset for single person pose estimation is composed of about 25K images of which 15K are training samples, 3K are validation samples and 7K are testing samples (which labels are withheld by the authors). The images are taken from YouTube videos covering 410 different human activities and the poses are manually annotated with up to 16 body joints.
463 PAPERS • 4 BENCHMARKS
The PoseTrack dataset is a large-scale benchmark for multi-person pose estimation and tracking in videos. It requires not only pose estimation in single frames, but also temporal tracking across frames. It contains 514 videos including 66,374 frames in total, split into 300, 50 and 208 videos for training, validation and test set respectively. For training videos, 30 frames from the center are annotated. For validation and test videos, besides 30 frames from the center, every fourth frame is also annotated for evaluating long range articulated tracking. The annotations include 15 body keypoints location, a unique person id and a head bounding box for each person instance.
90 PAPERS • 5 BENCHMARKS
The CrowdPose dataset contains about 20,000 images and a total of 80,000 human poses with 14 labeled keypoints. The test set includes 8,000 images. The crowded images containing homes are extracted from MSCOCO, MPII and AI Challenger.
85 PAPERS • 2 BENCHMARKS
This dataset focuses on heavily occluded human with comprehensive annotations including bounding-box, humans pose and instance mask. This dataset contains 13,360 elaborately annotated human instances within 5081 images. With average 0.573 MaxIoU of each person, OCHuman is the most complex and challenging dataset related to human.
52 PAPERS • 5 BENCHMARKS
COCO-WholeBody is an extension of COCO dataset with whole-body annotations. There are 4 types of bounding boxes (person box, face box, left-hand box, and right-hand box) and 133 keypoints (17 for body, 6 for feet, 68 for face and 42 for hands) annotations for each person in the image.
22 PAPERS • 6 BENCHMARKS
Throughout the history of art, the pose—as the holistic abstraction of the human body's expression—has proven to be a constant in numerous studies. However, due to the enormous amount of data that so far had to be processed by hand, its crucial role to the formulaic recapitulation of art-historical motifs since antiquity could only be highlighted selectively. This is true even for the now automated estimation of human poses, as domain-specific, sufficiently large data sets required for training computational models are either not publicly available or not indexed at a fine enough granularity. With the Poses of People in Art data set, we introduce the first openly licensed data set for estimating human poses in art and validating human pose estimators. It consists of 2,454 images from 22 art-historical depiction styles, including those that have increasingly turned away from lifelike representations of the body since the 19th century. A total of 10,749 human figures are precisely enclos
3 PAPERS • 1 BENCHMARK