The UCR Time Series Archive - introduced in 2002, has become an important resource in the time series data mining community, with at least one thousand published papers making use of at least one data set from the archive. The original incarnation of the archive had sixteen data sets but since that time, it has gone through periodic expansions. The last expansion took place in the summer of 2015 when the archive grew from 45 to 85 data sets. This paper introduces and will focus on the new data expansion from 85 to 128 data sets. Beyond expanding this valuable resource, this paper offers pragmatic advice to anyone who may wish to evaluate a new algorithm on the archive. Finally, this paper makes a novel and yet actionable claim: of the hundreds of papers that show an improvement over the standard baseline (1-nearest neighbor classification), a large fraction may be misattributing the reasons for their improvement. Moreover, they may have been able to achieve the same improvement with a
32 PAPERS • 2 BENCHMARKS
The ECGs in this collection were obtained using a non-commercial, PTB prototype recorder with the following specifications:
16 PAPERS • 4 BENCHMARKS
This dataset is composed of two collections of heartbeat signals derived from two famous PhysioNet datasets in heartbeat classification, the MIT-BIH Arrhythmia Dataset and the PTB Diagnostic ECG Database. The number of samples in both collections is large enough for training a deep neural network.
8 PAPERS • NO BENCHMARKS YET
Data Description The training data contains twelve-lead ECGs. The validation and test data contains twelve-lead, six-lead, four-lead, three-lead, and two-lead ECGs:
5 PAPERS • 2 BENCHMARKS
Electrocardiography (ECG) is a key diagnostic tool to assess the cardiac condition of a patient. Automatic ECG interpretation algorithms as diagnosis support systems promise large reliefs for the medical personnel - only on the basis of the number of ECGs that are routinely taken. However, the development of such algorithms requires large training datasets and clear benchmark procedures. In our opinion, both aspects are not covered satisfactorily by existing freely accessible ECG datasets.
4 PAPERS • 1 BENCHMARK
Data The data for this Challenge are from multiple sources: CPSC Database and CPSC-Extra Database INCART Database PTB and PTB-XL Database The Georgia 12-lead ECG Challenge (G12EC) Database Undisclosed Database The first source is the public (CPSC Database) and unused data (CPSC-Extra Database) from the China Physiological Signal Challenge in 2018 (CPSC2018), held during the 7th International Conference on Biomedical Engineering and Biotechnology in Nanjing, China. The unused data from the CPSC2018 is NOT the test data from the CPSC2018. The test data of the CPSC2018 is included in the final private database that has been sequestered. This training set consists of two sets of 6,877 (male: 3,699; female: 3,178) and 3,453 (male: 1,843; female: 1,610) of 12-ECG recordings lasting from 6 seconds to 60 seconds. Each recording was sampled at 500 Hz.
A dataset of 12-lead ECGs with annotations. The dataset contains 345 779 exams from 233 770 patients. It was obtained through stratified sampling from the CODE dataset ( 15% of the patients). The data was collected by the Telehealth Network of Minas Gerais in the period between 2010 and 2016.
3 PAPERS • 1 BENCHMARK
The MIMIC-IV-ECG module contains approximately 800,000 diagnostic electrocardiograms across nearly 160,000 unique patients. These diagnostic ECGs use 12 leads and are 10 seconds in length. They are sampled at 500 Hz. This subset contains all of the ECGs for patients who appear in the MIMIC-IV Clinical Database. When a cardiologist report is available for a given ECG, we provide the needed information to link the waveform to the report. The patients in MIMIC-IV-ECG have been matched against the MIMIC-IV Clinical Database, making it possible to link to information across the MIMIC-IV modules.
1 PAPER • NO BENCHMARKS YET