The Parkinson’s Progression Markers Initiative (PPMI) dataset originates from an observational clinical and longitudinal study comprising evaluations of people with Parkinson’s disease (PD), those people with high risk, and those who are healthy.
75 PAPERS • 3 BENCHMARKS
Learn2Reg is a dataset for medical image registration. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation.
26 PAPERS • 2 BENCHMARKS
A dataset for single-image 3D in the wild consisting of annotations of detailed 3D geometry for 140,000 images.
23 PAPERS • 2 BENCHMARKS
IXI Dataset is a collection of 600 MR brain images from normal, healthy subjects. The MR image acquisition protocol for each subject includes:
20 PAPERS • 4 BENCHMARKS
Several datasets are fostering innovation in higher-level functions for everyone, everywhere. By providing this repository, we hope to encourage the research community to focus on hard problems. In this repository, we present our medical imaging DICOM files of patients from our User Tests and Analysis 4 (UTA4) study. Here, we provide a dataset of the used medical images during the UTA4 tasks. This repository and respective dataset should be paired with the dataset-uta4-rates repository dataset. Work and results are published on a top Human-Computer Interaction (HCI) conference named AVI 2020 (page). Results were analyzed and interpreted on our Statistical Analysis charts. The user tests were made in clinical institutions, where clinicians diagnose several patients for a Single-Modality vs Multi-Modality comparison. For example, in these tests, we used both prototype-single-modality and prototype-multi-modality repositories for the comparison. On the same hand, the hereby dataset repres
1 PAPER • 1 BENCHMARK
The dataset contains full-spectral autofluorescence lifetime microscopic images (FS-FLIM) acquired on unstained ex-vivo human lung tissue, where 100 4D hypercubes of 256x256 (spatial resolution) x 32 (time bins) x 512 (spectral channels from 500nm to 780nm). This dataset associates with our paper "Deep Learning-Assisted Co-registration of Full-Spectral Autofluorescence Lifetime Microscopic Images with H&E-Stained Histology Images" (https://arxiv.org/abs/2202.07755) and "Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution" (https://doi.org/10.1038/s41467-021-26837-0). The FS-FLIM images provide transformative insights into human lung cancer with extra-dimensional information. This will enable visual and precise detection of early lung cancer. With the methodology in our co-registration paper, FS-FLIM images can be registered with H&E-stained histology images, allowing characterisation of tumour and surrounding cells at a celluar level with abs
1 PAPER • NO BENCHMARKS YET
Onchocerciasis is causing blindness in over half a million people in the world today. Drug development for the disease is crippled as there is no way of measuring effectiveness of the drug without an invasive procedure. Drug efficacy measurement through assessment of viability of onchocerca worms requires the patients to undergo nodulectomy which is invasive, expensive, time-consuming, skill-dependent, infrastructure dependent and lengthy process.
SR-Reg is a brain MR-CT registration dataset, deriving from SynthRAD 2023 (https://synthrad2023.grand-challenge.org/). This dataset contains 180 subjects preprocessed images, and each subject comprises a brain MR image and a brain CT image with corresponding segmentation label. SR-Reg is first introduced in MambaMorph (https://arxiv.org/abs/2401.13934).