Sentiment analysis is increasingly viewed as a vital task both from an academic and a commercial standpoint. The majority of current approaches, however, attempt to detect the overall polarity of a sentence, paragraph, or text span, regardless of the entities mentioned (e.g., laptops, restaurants) and their aspects (e.g., battery, screen; food, service). By contrast, this task is concerned with aspect based sentiment analysis (ABSA), where the goal is to identify the aspects of given target entities and the sentiment expressed towards each aspect. Datasets consisting of customer reviews with human-authored annotations identifying the mentioned aspects of the target entities and the sentiment polarity of each aspect will be provided.
99 PAPERS • 5 BENCHMARKS
Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average
56 PAPERS • 1 BENCHMARK
MAMS is a challenge dataset for aspect-based sentiment analysis (ABSA), in which each sentences contain at least two aspects with different sentiment polarities. MAMS dataset contains two versions: one for aspect-term sentiment analysis (ATSA) and one for aspect-category sentiment analysis (ACSA).
43 PAPERS • 1 BENCHMARK
Most of the aspect based sentiment analysis research aims at identifying the sentiment polarities toward some explicit aspect terms while ignores implicit aspects in text. To capture both explicit and implicit aspects, we focus on aspect-category based sentiment analysis, which involves joint aspect category detection and category-oriented sentiment classification. However, currently only a few simple studies have focused on this problem. The shortcomings in the way they defined the task make their approaches difficult to effectively learn the inner-relations between categories and the inter-relations between categories and sentiments. In this work, we re-formalize the task as a category-sentiment hierarchy prediction problem, which contains a hierarchy output structure to first identify multiple aspect categories in a piece of text, and then predict the sentiment for each of the identified categories. Specifically, we propose a Hierarchical Graph Convolutional Network (Hier-GCN), wher
11 PAPERS • 1 BENCHMARK
Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum, has received increasing popularity, which accumulates a large number of user opinions towards various aspects. This motivates us to investigate the task of ABSA on QA forums (ABSA-QA), aiming to jointly detect the discussed aspects and their sentiment polarities for a given QA pair. Unlike review sentences, a QA pair is composed of two parallel sentences, which requires interaction modeling to align the aspect mentioned in the question and the associated opinion clues in the answer. To this end, we propose a model with a specific design of cross-sentence aspect-opinion interaction modeling to address this task. The proposed method is evaluated on three real-world datasets and the results show that our model outperforms several strong basel
8 PAPERS • 1 BENCHMARK
Aspect-based sentiment analysis (ABSA) aims to detect the targets (which are composed by continuous words), aspects and sentiment polarities in text. Published datasets from SemEval-2015 and SemEval-2016 reveal that a sentiment polarity depends on both the target and the aspect. However, most of the existing methods consider predicting sentiment polarities from either targets or aspects but not from both, thus they easily make wrong predictions on sentiment polarities. In particular, where the target is implicit, i.e., it does not appear in the given text, the methods predicting sentiment polarities from targets do not work. To tackle these limitations in ABSA, this paper proposes a novel method for target-aspect-sentiment joint detection. It relies on a pre-trained language model and can capture the dependence on both targets and aspects for sentiment prediction. Experimental results on the SemEval-2015 and SemEval-2016 restaurant datasets show that the proposed method achieves a high
5 PAPERS • 1 BENCHMARK
Laptop-ACOS is a brand new Laptop dataset collected from the Amazon platform in the years 2017 and 2018 (covering ten types of laptops under six brands such as ASUS, Acer, Samsung, Lenovo, MBP, MSI, and so on). It contains 4,076 review sentences, much larger than the SemEval Laptop datasets. For Laptop-ACOS, we annotate the four elements and their corresponding quadruples all by ourselves. We employ the aspect categories defined in the SemEval 2016 Laptop dataset. The Laptop-ACOS dataset contains 4076 sentences with 5758 quadruples. As we have mentioned, a large percentage of the quadruples contain implicit aspects or implicit opinions . By comparing two datasets, it can be observed that Laptop-ACOS has a higher percentage of implicit opinions than Restaurant-ACOS . It is worth noting that the Laptop-ACOS is available for all subtasks in ABSA, including aspect-based sentiment classification, aspect-sentiment pair extraction, aspect-opinion pair extraction, aspect-opinion sentiment tri
4 PAPERS • 1 BENCHMARK
The Restaurant-ACOS dataset is constructed based on the SemEval 2016 Restaurant dataset (Pontiki et al., 2016) and its expansion datasets (Fan et al., 2019; Xu et al., 2020). The SemEval 2016 Restaurant dataset (Pontiki et al., 2016) was annotated with explicit and implicit aspects, categories, and sentiment. (Fan et al., 2019; Xu et al., 2020) further added the opinion annotations. We integrate their annotations to construct aspect-category-opinion-sentiment quadruples and further annotate the implicit opinions. The Restaurant-ACOS dataset contains 2286 sentences with 3658 quadruples. It is worth noting that the Restaurant-ACOS is available for all subtasks in ABSA, including aspect-based sentiment classification, aspect-sentiment pair extraction, aspect-opinion pair extraction, aspect-opinion sentiment triple extraction, aspect-category-sentiment triple extraction, etc.
This is an entity-level Twitter Sentiment Analysis dataset. For each message, the task is to judge the sentiment of the entire sentence towards a given entity. For example, A outperforms B is positive for entity A but negative for entity B. The dataset contains ~70K labeled training messages and 1K labeled validation messages. It is available online for free on Kaggle.
Chinese AI and Law 2019 Similar Case Matching dataset. CAIL2019-SCM contains 8,964 triplets of cases published by the Supreme People's Court of China. CAIL2019-SCM focuses on detecting similar cases, and the participants are required to check which two cases are more similar in the triplets.
3 PAPERS • 2 BENCHMARKS
DiaASQ is a fine-grained Aspect-based Sentiment Analysis (ABSA) benchmark under the conversation scenario. It challenges existing ABSA methods by 1) extracting quadruple of target-aspect-opinion-sentiment in a dialogue, and 2) modeling the dialogue discourse structures. The dataset is constructed by systematically crawling tweets from digital bloggers, followed by a series of preprocessing steps including filtering, normalizing, pruning, and annotating the collected dialogues, resulting in a final corpus of 1,000 dialogues. To enhance the multilingual usability, DiaASQ has both the English and Chinese versions of languages.
Pars-ABSA is a manually annotated Persian dataset, Pars-ABSA, which is verified by 3 native Persian speakers. The dataset consists of 5,114 positive, 3,061 negative and 1,827 neutral data samples from 5,602 unique reviews.
3 PAPERS • NO BENCHMARKS YET
YASO is a crowd-sourced TSA evaluation dataset, collected using a new annotation scheme for labeling targets and their sentiments. The dataset contains 2,215 English sentences from movie, business and product reviews, and 7,415 terms and their corresponding sentiments annotated within these sentences.
2 PAPERS • 1 BENCHMARK
The peer-reviewed paper of AWARE dataset is published in ASEW 2021, and can be accessed through: http://doi.org/10.1109/ASEW52652.2021.00049. Kindly cite this paper when using AWARE dataset.
1 PAPER • 3 BENCHMARKS
The Covid19-CountryImage dataset is a Twitter dataset which contains COVID-19-related tweets.
1 PAPER • NO BENCHMARKS YET
FABSA, An aspect-based sentiment analysis dataset in the Customer Feedback space (Trustpilot, Google Play and Apple Store reviews).
1 PAPER • 2 BENCHMARKS
UIT-ViSFD is a Vietnamese Smartphone Feedback Dataset as a new benchmark corpus built based on strict annotation schemes for evaluating aspect-based sentiment analysis, consisting of 11,122 human-annotated comments for mobile e-commerce, which is freely available for research purposes.
SEN is a novel publicly available human-labelled dataset for training and testing machine learning algorithms for the problem of entity level sentiment analysis of political news headlines.
0 PAPER • NO BENCHMARKS YET