The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.
10,147 PAPERS • 92 BENCHMARKS
The MNIST database (Modified National Institute of Standards and Technology database) is a large collection of handwritten digits. It has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger NIST Special Database 3 (digits written by employees of the United States Census Bureau) and Special Database 1 (digits written by high school students) which contain monochrome images of handwritten digits. The digits have been size-normalized and centered in a fixed-size image. The original black and white (bilevel) images from NIST were size normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The resulting images contain grey levels as a result of the anti-aliasing technique used by the normalization algorithm. the images were centered in a 28x28 image by computing the center of mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.
6,980 PAPERS • 52 BENCHMARKS
The Stanford Question Answering Dataset (SQuAD) is a collection of question-answer pairs derived from Wikipedia articles. In SQuAD, the correct answers of questions can be any sequence of tokens in the given text. Because the questions and answers are produced by humans through crowdsourcing, it is more diverse than some other question-answering datasets. SQuAD 1.1 contains 107,785 question-answer pairs on 536 articles. SQuAD2.0 (open-domain SQuAD, SQuAD-Open), the latest version, combines the 100,000 questions in SQuAD1.1 with over 50,000 un-answerable questions written adversarially by crowdworkers in forms that are similar to the answerable ones.
1,918 PAPERS • 11 BENCHMARKS
The Natural Questions corpus is a question answering dataset containing 307,373 training examples, 7,830 development examples, and 7,842 test examples. Each example is comprised of a google.com query and a corresponding Wikipedia page. Each Wikipedia page has a passage (or long answer) annotated on the page that answers the question and one or more short spans from the annotated passage containing the actual answer. The long and the short answer annotations can however be empty. If they are both empty, then there is no answer on the page at all. If the long answer annotation is non-empty, but the short answer annotation is empty, then the annotated passage answers the question but no explicit short answer could be found. Finally 1% of the documents have a passage annotated with a short answer that is “yes” or “no”, instead of a list of short spans.
1,002 PAPERS • 8 BENCHMARKS
The MS MARCO (Microsoft MAchine Reading Comprehension) is a collection of datasets focused on deep learning in search. The first dataset was a question answering dataset featuring 100,000 real Bing questions and a human generated answer. Over time the collection was extended with a 1,000,000 question dataset, a natural language generation dataset, a passage ranking dataset, keyphrase extraction dataset, crawling dataset, and a conversational search.
823 PAPERS • 7 BENCHMARKS
ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use.
799 PAPERS • NO BENCHMARKS YET
TriviaQA is a realistic text-based question answering dataset which includes 950K question-answer pairs from 662K documents collected from Wikipedia and the web. This dataset is more challenging than standard QA benchmark datasets such as Stanford Question Answering Dataset (SQuAD), as the answers for a question may not be directly obtained by span prediction and the context is very long. TriviaQA dataset consists of both human-verified and machine-generated QA subsets.
633 PAPERS • 4 BENCHMARKS
The Reddit dataset is a graph dataset from Reddit posts made in the month of September, 2014. The node label in this case is the community, or “subreddit”, that a post belongs to. 50 large communities have been sampled to build a post-to-post graph, connecting posts if the same user comments on both. In total this dataset contains 232,965 posts with an average degree of 492. The first 20 days are used for training and the remaining days for testing (with 30% used for validation). For features, off-the-shelf 300-dimensional GloVe CommonCrawl word vectors are used.
587 PAPERS • 13 BENCHMARKS
HotpotQA is a question answering dataset collected on the English Wikipedia, containing about 113K crowd-sourced questions that are constructed to require the introduction paragraphs of two Wikipedia articles to answer. Each question in the dataset comes with the two gold paragraphs, as well as a list of sentences in these paragraphs that crowdworkers identify as supporting facts necessary to answer the question.
564 PAPERS • 1 BENCHMARK
CNN/Daily Mail is a dataset for text summarization. Human generated abstractive summary bullets were generated from news stories in CNN and Daily Mail websites as questions (with one of the entities hidden), and stories as the corresponding passages from which the system is expected to answer the fill-in the-blank question. The authors released the scripts that crawl, extract and generate pairs of passages and questions from these websites.
463 PAPERS • 10 BENCHMARKS
BoolQ is a question answering dataset for yes/no questions containing 15942 examples. These questions are naturally occurring – they are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context.
394 PAPERS • 1 BENCHMARK
PIQA is a dataset for commonsense reasoning, and was created to investigate the physical knowledge of existing models in NLP.
349 PAPERS • 1 BENCHMARK
The ReAding Comprehension dataset from Examinations (RACE) dataset is a machine reading comprehension dataset consisting of 27,933 passages and 97,867 questions from English exams, targeting Chinese students aged 12-18. RACE consists of two subsets, RACE-M and RACE-H, from middle school and high school exams, respectively. RACE-M has 28,293 questions and RACE-H has 69,574. Each question is associated with 4 candidate answers, one of which is correct. The data generation process of RACE differs from most machine reading comprehension datasets - instead of generating questions and answers by heuristics or crowd-sourcing, questions in RACE are specifically designed for testing human reading skills, and are created by domain experts.
349 PAPERS • 3 BENCHMARKS
OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of a subject. It consists of 5,957 multiple-choice elementary-level science questions (4,957 train, 500 dev, 500 test), which probe the understanding of a small “book” of 1,326 core science facts and the application of these facts to novel situations. For training, the dataset includes a mapping from each question to the core science fact it was designed to probe. Answering OpenBookQA questions requires additional broad common knowledge, not contained in the book. The questions, by design, are answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. Additionally, the dataset includes a collection of 5,167 crowd-sourced common knowledge facts, and an expanded version of the train/dev/test questions where each question is associated with its originating core fact, a human accuracy score, a clarity score, and an anonymized crowd-worker
341 PAPERS • 2 BENCHMARKS
WinoGrande is a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations.
331 PAPERS • 1 BENCHMARK
Automatic image captioning is the task of producing a natural-language utterance (usually a sentence) that correctly reflects the visual content of an image. Up to this point, the resource most used for this task was the MS-COCO dataset, containing around 120,000 images and 5-way image-caption annotations (produced by paid annotators).
312 PAPERS • 2 BENCHMARKS
Discrete Reasoning Over Paragraphs DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. The questions consist of passages extracted from Wikipedia articles. The dataset is split into a training set of about 77,000 questions, a development set of around 9,500 questions and a hidden test set similar in size to the development set.
294 PAPERS • 2 BENCHMARKS
The Choice Of Plausible Alternatives (COPA) evaluation provides researchers with a tool for assessing progress in open-domain commonsense causal reasoning. COPA consists of 1000 questions, split equally into development and test sets of 500 questions each. Each question is composed of a premise and two alternatives, where the task is to select the alternative that more plausibly has a causal relation with the premise. The correct alternative is randomized so that the expected performance of randomly guessing is 50%.
281 PAPERS • 1 BENCHMARK
TruthfulQA is a benchmark to measure whether a language model is truthful in generating answers to questions. The benchmark comprises 817 questions that span 38 categories, including health, law, finance and politics. The authors crafted questions that some humans would answer falsely due to a false belief or misconception.
270 PAPERS • 1 BENCHMARK
Outside Knowledge Visual Question Answering (OK-VQA) includes more than 14,000 questions that require external knowledge to answer.
258 PAPERS • 2 BENCHMARKS
The NewsQA dataset is a crowd-sourced machine reading comprehension dataset of 120,000 question-answer pairs.
249 PAPERS • 1 BENCHMARK
CoQA is a large-scale dataset for building Conversational Question Answering systems. The goal of the CoQA challenge is to measure the ability of machines to understand a text passage and answer a series of interconnected questions that appear in a conversation.
228 PAPERS • 2 BENCHMARKS
LAnguage Model Analysis (LAMA) consists of a set of knowledge sources, each comprised of a set of facts. LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models.
205 PAPERS • NO BENCHMARKS YET
TextVQA is a dataset to benchmark visual reasoning based on text in images. TextVQA requires models to read and reason about text in images to answer questions about them. Specifically, models need to incorporate a new modality of text present in the images and reason over it to answer TextVQA questions.
201 PAPERS • 2 BENCHMARKS
The WebQuestions dataset is a question answering dataset using Freebase as the knowledge base and contains 6,642 question-answer pairs. It was created by crawling questions through the Google Suggest API, and then obtaining answers using Amazon Mechanical Turk. The original split uses 3,778 examples for training and 2,032 for testing. All answers are defined as Freebase entities.
201 PAPERS • 3 BENCHMARKS
BEIR (Benchmarking IR) is a heterogeneous benchmark containing different information retrieval (IR) tasks. Through BEIR, it is possible to systematically study the zero-shot generalization capabilities of multiple neural retrieval approaches.
198 PAPERS • 19 BENCHMARKS
The WikiQA corpus is a publicly available set of question and sentence pairs, collected and annotated for research on open-domain question answering. In order to reflect the true information need of general users, Bing query logs were used as the question source. Each question is linked to a Wikipedia page that potentially has the answer. Because the summary section of a Wikipedia page provides the basic and usually most important information about the topic, sentences in this section were used as the candidate answers. The corpus includes 3,047 questions and 29,258 sentences, where 1,473 sentences were labeled as answer sentences to their corresponding questions.
189 PAPERS • 2 BENCHMARKS
StrategyQA is a question answering benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. It includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies.
178 PAPERS • 1 BENCHMARK
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently, the dataset is entirely parallel across 11 languages.
170 PAPERS • 1 BENCHMARK
Question Answering in Context is a large-scale dataset that consists of around 14K crowdsourced Question Answering dialogs with 98K question-answer pairs in total. Data instances consist of an interactive dialog between two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts (spans) from the text.
165 PAPERS • 1 BENCHMARK
BioASQ is a question answering dataset. Instances in the BioASQ dataset are composed of a question (Q), human-annotated answers (A), and the relevant contexts (C) (also called snippets).
163 PAPERS • 2 BENCHMARKS
ATOMIC is an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment").
162 PAPERS • NO BENCHMARKS YET
CORD-19 is a free resource of tens of thousands of scholarly articles about COVID-19, SARS-CoV-2, and related coronaviruses for use by the global research community.
157 PAPERS • 2 BENCHMARKS
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 200K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology — the set of linguistic features that each language expresses — such that the authors expect models performing well on this set to generalize across a large number of the languages in the world.
153 PAPERS • 1 BENCHMARK
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between 4 different languages on average.
151 PAPERS • 1 BENCHMARK
The NarrativeQA dataset includes a list of documents with Wikipedia summaries, links to full stories, and questions and answers.
147 PAPERS • 1 BENCHMARK
Visual Dialog (VisDial) dataset contains human annotated questions based on images of MS COCO dataset. This dataset was developed by pairing two subjects on Amazon Mechanical Turk to chat about an image. One person was assigned the job of a ‘questioner’ and the other person acted as an ‘answerer’. The questioner sees only the text description of an image (i.e., an image caption from MS COCO dataset) and the original image remains hidden to the questioner. Their task is to ask questions about this hidden image to “imagine the scene better”. The answerer sees the image, caption and answers the questions asked by the questioner. The two of them can continue the conversation by asking and answering questions for 10 rounds at max.
144 PAPERS • 6 BENCHMARKS
The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts.
143 PAPERS • 2 BENCHMARKS
MultiRC (Multi-Sentence Reading Comprehension) is a dataset of short paragraphs and multi-sentence questions, i.e., questions that can be answered by combining information from multiple sentences of the paragraph. The dataset was designed with three key challenges in mind: * The number of correct answer-options for each question is not pre-specified. This removes the over-reliance on answer-options and forces them to decide on the correctness of each candidate answer independently of others. In other words, the task is not to simply identify the best answer-option, but to evaluate the correctness of each answer-option individually. * The correct answer(s) is not required to be a span in the text. * The paragraphs in the dataset have diverse provenance by being extracted from 7 different domains such as news, fiction, historical text etc., and hence are expected to be more diverse in their contents as compared to single-domain datasets. The entire corpus consists of around 10K questions
141 PAPERS • 1 BENCHMARK
Given a partial description like "she opened the hood of the car," humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). SWAG (Situations With Adversarial Generations) is a large-scale dataset for this task of grounded commonsense inference, unifying natural language inference and physically grounded reasoning.
141 PAPERS • 2 BENCHMARKS
Science Question Answering (ScienceQA) is a new benchmark that consists of 21,208 multimodal multiple choice questions with diverse science topics and annotations of their answers with corresponding lectures and explanations. Out of the questions in ScienceQA, 10,332 (48.7%) have an image context, 10,220 (48.2%) have a text context, and 6,532 (30.8%) have both. Most questions are annotated with grounded lectures (83.9%) and detailed explanations (90.5%). The lecture and explanation provide general external knowledge and specific reasons, respectively, for arriving at the correct answer. To the best of our knowledge, ScienceQA is the first large-scale multimodal dataset that annotates lectures and explanations for the answers.
Multiple choice question answering based on the United States Medical License Exams (USMLE). The dataset is collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages, respectively.
128 PAPERS • 1 BENCHMARK
e-SNLI is used for various goals, such as obtaining full sentence justifications of a model's decisions, improving universal sentence representations and transferring to out-of-domain NLI datasets.
122 PAPERS • 1 BENCHMARK
ELI5 is a dataset for long-form question answering. It contains 270K complex, diverse questions that require explanatory multi-sentence answers. Web search results are used as evidence documents to answer each question.
120 PAPERS • 1 BENCHMARK
SimpleQuestions is a large-scale factoid question answering dataset. It consists of 108,442 natural language questions, each paired with a corresponding fact from Freebase knowledge base. Each fact is a triple (subject, relation, object) and the answer to the question is always the object. The dataset is divided into training, validation, and test sets with 75,910, 10,845 and 21,687 questions respectively.
113 PAPERS • 1 BENCHMARK
DocVQA consists of 50,000 questions defined on 12,000+ document images.
112 PAPERS • 2 BENCHMARKS
MCTest is a freely available set of stories and associated questions intended for research on the machine comprehension of text.
The MRQA (Machine Reading for Question Answering) dataset is a dataset for evaluating the generalization capabilities of reading comprehension systems.
111 PAPERS • 1 BENCHMARK