The Universal Dependencies (UD) project seeks to develop cross-linguistically consistent treebank annotation of morphology and syntax for multiple languages. The first version of the dataset was released in 2015 and consisted of 10 treebanks over 10 languages. Version 2.7 released in 2020 consists of 183 treebanks over 104 languages. The annotation consists of UPOS (universal part-of-speech tags), XPOS (language-specific part-of-speech tags), Feats (universal morphological features), Lemmas, dependency heads and universal dependency labels.
505 PAPERS • 12 BENCHMARKS
Common Voice is an audio dataset that consists of a unique MP3 and corresponding text file. There are 9,283 recorded hours in the dataset. The dataset also includes demographic metadata like age, sex, and accent. The dataset consists of 7,335 validated hours in 60 languages.
314 PAPERS • 164 BENCHMARKS
MuST-C currently represents the largest publicly available multilingual corpus (one-to-many) for speech translation. It covers eight language directions, from English to German, Spanish, French, Italian, Dutch, Portuguese, Romanian and Russian. The corpus consists of audio, transcriptions and translations of English TED talks, and it comes with a predefined training, validation and test split.
194 PAPERS • 2 BENCHMARKS
A corpus of parallel text in 21 European languages from the proceedings of the European Parliament.
125 PAPERS • NO BENCHMARKS YET
The Microsoft Academic Graph is a heterogeneous graph containing scientific publication records, citation relationships between those publications, as well as authors, institutions, journals, conferences, and fields of study.
116 PAPERS • 1 BENCHMARK
This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages. This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository.
96 PAPERS • NO BENCHMARKS YET
WikiANN, also known as PAN-X, is a multilingual named entity recognition dataset. It consists of Wikipedia articles that have been annotated with LOC (location), PER (person), and ORG (organization) tags in the IOB2 format¹². This dataset serves as a valuable resource for training and evaluating named entity recognition models across various languages.
57 PAPERS • 3 BENCHMARKS
Europarl-ST is a multilingual Spoken Language Translation corpus containing paired audio-text samples for SLT from and into 9 European languages, for a total of 72 different translation directions. This corpus has been compiled using the debates held in the European Parliament in the period between 2008 and 2012.
55 PAPERS • NO BENCHMARKS YET
OSCAR or Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. The dataset used for training multilingual models such as BART incorporates 138 GB of text.
Multilingual Document Classification Corpus (MLDoc) is a cross-lingual document classification dataset covering English, German, French, Spanish, Italian, Russian, Japanese and Chinese. It is a subset of the Reuters Corpus Volume 2 selected according to the following design choices:
51 PAPERS • 11 BENCHMARKS
WikiLingua includes ~770k article and summary pairs in 18 languages from WikiHow. Gold-standard article-summary alignments across languages are extracted by aligning the images that are used to describe each how-to step in an article.
50 PAPERS • 5 BENCHMARKS
Multilingual Knowledge Questions and Answers (MKQA) is an open-domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total). The goal of this dataset is to provide a challenging benchmark for question answering quality across a wide set of languages. Answers are based on a language-independent data representation, making results comparable across languages and independent of language-specific passages. With 26 languages, this dataset supplies the widest range of languages to-date for evaluating question answering.
37 PAPERS • NO BENCHMARKS YET
AVSpeech is a large-scale audio-visual dataset comprising speech clips with no interfering background signals. The segments are of varying length, between 3 and 10 seconds long, and in each clip the only visible face in the video and audible sound in the soundtrack belong to a single speaking person. In total, the dataset contains roughly 4700 hours of video segments with approximately 150,000 distinct speakers, spanning a wide variety of people, languages and face poses.
35 PAPERS • NO BENCHMARKS YET
WMT 2020 is a collection of datasets used in shared tasks of the Fifth Conference on Machine Translation. The conference builds on a series of annual workshops and conferences on Statistical Machine Translation.
33 PAPERS • 1 BENCHMARK
CoVoST is a large-scale multilingual speech-to-text translation corpus. Its latest 2nd version covers translations from 21 languages into English and from English into 15 languages. It has total 2880 hours of speech and is diversified with 78K speakers and 66 accents.
32 PAPERS • NO BENCHMARKS YET
COunter NArratives through Nichesourcing (CONAN) is a dataset that consists of 4,078 pairs over the 3 languages. Additionally, 3 types of metadata are provided: expert demographics, hate speech sub-topic and counter-narrative type. The dataset is augmented through translation (from Italian/French to English) and paraphrasing, which brought the total number of pairs to 14.988.
21 PAPERS • NO BENCHMARKS YET
XGLUE is an evaluation benchmark XGLUE,which is composed of 11 tasks that span 19 languages. For each task, the training data is only available in English. This means that to succeed at XGLUE, a model must have a strong zero-shot cross-lingual transfer capability to learn from the English data of a specific task and transfer what it learned to other languages. Comparing to its concurrent work XTREME, XGLUE has two characteristics: First, it includes cross-lingual NLU and cross-lingual NLG tasks at the same time; Second, besides including 5 existing cross-lingual tasks (i.e. NER, POS, MLQA, PAWS-X and XNLI), XGLUE selects 6 new tasks from Bing scenarios as well, including News Classification (NC), Query-Ad Matching (QADSM), Web Page Ranking (WPR), QA Matching (QAM), Question Generation (QG) and News Title Generation (NTG). Such diversities of languages, tasks and task origin provide a comprehensive benchmark for quantifying the quality of a pre-trained model on cross-lingual natural lan
20 PAPERS • 2 BENCHMARKS
CVSS is a massively multilingual-to-English speech to speech translation (S2ST) corpus, covering sentence-level parallel S2ST pairs from 21 languages into English. CVSS is derived from the Common Voice speech corpus and the CoVoST 2 speech-to-text translation (ST) corpus, by synthesizing the translation text from CoVoST 2 into speech using state-of-the-art TTS systems
18 PAPERS • 1 BENCHMARK
Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. This dataset enables the evaluation of mono- and multi-lingual models in high-, medium-, and low-resource languages. Each question has four multiple-choice answers and is linked to a short passage from the FLORES-200 dataset. The human annotation procedure was carefully curated to create questions that discriminate between different levels of generalizable language comprehension and is reinforced by extensive quality checks. While all questions directly relate to the passage, the English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. Belebele opens up new avenues for evaluating and analyzing the multilingual abilities of language models and NLP systems.
17 PAPERS • NO BENCHMARKS YET
XFUND is a multilingual form understanding benchmark dataset that includes human-labeled forms with key-value pairs in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese).
15 PAPERS • NO BENCHMARKS YET
license: apache-2.0 tags: human-feedback size_categories: 100K<n<1M pretty_name: OpenAssistant Conversations
14 PAPERS • NO BENCHMARKS YET
The Multilingual Reuters Collection dataset comprises over 11,000 articles from six classes in five languages, i.e., English (E), French (F), German (G), Italian (I), and Spanish (S).
13 PAPERS • 1 BENCHMARK
X-FACT is a large publicly available multilingual dataset for factual verification of naturally existing real-world claims. The dataset contains short statements in 25 languages and is labeled for veracity by expert fact-checkers. The dataset includes a multilingual evaluation benchmark that measures both out-of-domain generalization, and zero-shot capabilities of the multilingual models.
A large-scale stance detection dataset from comments written by candidates of elections in Switzerland. The dataset consists of German, French and Italian text, allowing for a cross-lingual evaluation of stance detection. It contains 67 000 comments on more than 150 political issues (targets).
13 PAPERS • NO BENCHMARKS YET
xSID, a new evaluation benchmark for cross-lingual (X) Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect, covering Arabic (ar), Chinese (zh), Danish (da), Dutch (nl), English (en), German (de), Indonesian (id), Italian (it), Japanese (ja), Kazakh (kk), Serbian (sr), Turkish (tr) and an Austro-Bavarian German dialect, South Tyrolean (de-st).
Synbols is a dataset generator designed for probing the behavior of learning algorithms. By defining the distribution over latent factors one can craft a dataset specifically tailored to answer specific questions about a given algorithm.
11 PAPERS • NO BENCHMARKS YET
VoxForge is an open speech dataset that was set up to collect transcribed speech for use with Free and Open Source Speech Recognition Engines (on Linux, Windows and Mac). Image Source: http://www.voxforge.org/home
11 PAPERS • 9 BENCHMARKS
MINTAKA is a complex, natural, and multilingual dataset designed for experimenting with end-to-end question-answering models. It is composed of 20,000 question-answer pairs collected in English, annotated with Wikidata entities, and translated into Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish for a total of 180,000 samples. Mintaka includes 8 types of complex questions, including superlative, intersection, and multi-hop questions, which were naturally elicited from crowd workers.
10 PAPERS • NO BENCHMARKS YET
MultiEURLEX is a multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. The dataset covers 23 official EU languages from 7 language families.
9 PAPERS • NO BENCHMARKS YET
Global Voices is a multilingual dataset for evaluating cross-lingual summarization methods. It is extracted from social-network descriptions of Global Voices news articles to cheaply collect evaluation data for into-English and from-English summarization in 15 languages.
8 PAPERS • NO BENCHMARKS YET
MM-COVID is a dataset for fake news detection related to COVID-19. This dataset provides the multilingual fake news and the relevant social context. It contains 3,981 pieces of fake news content and 7,192 trustworthy information from English, Spanish, Portuguese, Hindi, French and Italian, 6 different languages.
XFORMAL is a multilingual formal style transfer benchmark of multiple formal reformulations of informal text in Brazilian Portuguese, French, and Italian.
Demetr is a diagnostic dataset with 31K English examples (translated from 10 source languages) for evaluating the sensitivity of MT evaluation metrics to 35 different linguistic perturbations spanning semantic, syntactic, and morphological error categories.
6 PAPERS • NO BENCHMARKS YET
KnowledgeNet is a benchmark dataset for the task of automatically populating a knowledge base (Wikidata) with facts expressed in natural language text on the web. KnowledgeNet provides text exhaustively annotated with facts, thus enabling the holistic end-to-end evaluation of knowledge base population systems as a whole, unlike previous benchmarks that are more suitable for the evaluation of individual subcomponents (e.g., entity linking, relation extraction).
This resource, our Concepticon, links concept labels from different conceptlists to concept sets. Each concept set is given a unique identifier, a unique label, and a human-readable definition. Concept sets are further structured by defining different relations between the concepts, as you can see in the graphic to the right, which displays the relations between concept sets linked to the concept set SIBLING. The resource can be used for various purposes. Serving as a rich reference for new and existing databases in diachronic and synchronic linguistics, it allows researchers a quick access to studies on semantic change, cross-linguistic polysemies, and semantic associations.
5 PAPERS • NO BENCHMARKS YET
EUR-Lex-Sum is a dataset for cross-lingual summarization. It is based on manually curated document summaries of legal acts from the European Union law platform. Documents and their respective summaries exist as crosslingual paragraph-aligned data in several of the 24 official European languages, enabling access to various cross-lingual and lower-resourced summarization setups. The dataset contains up to 1,500 document/summary pairs per language, including a subset of 375 cross-lingually aligned legal acts with texts available in all 24 languages.
ItaCoLA is a corpus for monolingual and cross-lingual acceptability judgments which contains almost 10,000 sentences with acceptability judgments.
5 PAPERS • 1 BENCHMARK
WikiNEuRal is a high-quality automatically-generated dataset for Multilingual Named Entity Recognition.
EasyCall is a new dysarthric speech command dataset in Italian. The dataset consists of 21386 audio recordings from 24 healthy and 31 dysarthric speakers, whose individual degree of speech impairment was assessed by neurologists through the Therapy Outcome Measure. The corpus aims at providing a resource for the development of ASR-based assistive technologies for patients with dysarthria. In particular, it may be exploited to develop a voice-controlled contact application for commercial smartphones, aiming at improving dysarthric patients' ability to communicate with their family and caregivers. Before recording the dataset, participants were administered a survey to evaluate which commands are more likely to be employed by dysarthric individuals in a voice-controlled contact application. In addition, the dataset includes a list of non-commands (i.e., words near/inside commands or phonetically close to commands) that can be leveraged to build a more robust command recognition system.
4 PAPERS • NO BENCHMARKS YET
This is a large-scale dataset of tweets associated to thousands of news articles published on Italian disinformation websites in the context of 2019 European elections.
MuMiN is a misinformation graph dataset containing rich social media data (tweets, replies, users, images, articles, hashtags), spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade.
4 PAPERS • 3 BENCHMARKS
The DAWT dataset consists of Densely Annotated Wikipedia Texts across multiple languages. The annotations include labeled text mentions mapping to entities (represented by their Freebase machine ids) as well as the type of the entity. The data set contains total of 13.6M articles, 5.0B tokens, 13.8M mention entity co-occurrences. DAWT contains 4.8 times more anchor text to entity links than originally present in the Wikipedia markup. Moreover, it spans several languages including English, Spanish, Italian, German, French and Arabic.
3 PAPERS • NO BENCHMARKS YET
The dataset contains the main components of the news articles published online by the newspaper named <a href="https://gazzettadimodena.gelocal.it/modena">Gazzetta di Modena</a>: url of the web page, title, sub-title, text, date of publication, crime category assigned to each news article by the author.
This is a gzipped CSV file containing the 13 million Duolingo student learning traces used in experiments by Settles & Meeder (2016). For more details and replication source code, visit: https://github.com/duolingo/halflife-regression (2016-06-07)
GeoCoV19 is a large-scale Twitter dataset containing more than 524 million multilingual tweets. The dataset contains around 378K geotagged tweets and 5.4 million tweets with Place information. The annotations include toponyms from the user location field and tweet content and resolve them to geolocations such as country, state, or city level. In this case, 297 million tweets are annotated with geolocation using the user location field and 452 million tweets using tweet content.
MRS, a multilingual reply suggestion dataset with ten languages. MRS can be used to compare two families of models: 1) retrieval models that select the reply from a fixed set and 2) generation models that produce the reply from scratch. Therefore, MRS complements existing cross-lingual generalization benchmarks that focus on classification and sequence labeling tasks.
Multilingual TOP is a dataset for multilingual semantic parsing with human-written sentences as opposed to machine translated ones. The dataset sentences are in English, Italian and Japanese and it is based on the Facebook Task Oriented Parsing (TOP) dataset.
Ricordi contains handwritten texts written in Italian. Train sample consists of 295 lines, validation - 19 lines and test - 69 lines.