The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language. The corpus is based on the dataset introduced by Pang and Lee (2005) and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges.
2,015 PAPERS • 9 BENCHMARKS
The Yelp Dataset is a valuable resource for academic research, teaching, and learning. It provides a rich collection of real-world data related to businesses, reviews, and user interactions. Here are the key details about the Yelp Dataset: Reviews: A whopping 6,990,280 reviews from users. Businesses: Information on 150,346 businesses. Pictures: A collection of 200,100 pictures. Metropolitan Areas: Data from 11 metropolitan areas. Tips: Over 908,915 tips provided by 1,987,897 users. Business Attributes: Details like hours, parking availability, and ambiance for more than 1.2 million businesses. Aggregated Check-ins: Historical check-in data for each of the 131,930 businesses.
68 PAPERS • 21 BENCHMARKS
The Yelp Reviews Polarity dataset is obtained from the Yelp Dataset Challenge in 2015 (1,569,264 samples that have review text).
33 PAPERS • 1 BENCHMARK
This repository contains a financial-domain-focused dataset for financial sentiment/emotion classification and stock market time series prediction. It's based on our paper: StockEmotions: Discover Investor Emotions for Financial Sentiment Analysis and Multivariate Time Series accepted by AAAI 2023 Bridge (AI for Financial Services).
2 PAPERS • NO BENCHMARKS YET
In AISIA-VN-Review-S and AISIA-VN-Review-F datasets, we first collect 450K customer reviewing comments from various e–commerce websites. Then, we manually label each review to be either positive or negative, resulting in 358,743 positive reviews and 100,699 negative reviews. We named this dataset the sentiment classification from reviews collected by AISIA, the full version (AISIA-VN-Review-F). However, in this work, we are interested in improving the model’s performance when the training data are limited; thus, we only consider a subset of up to 25K training reviews and evaluate the model on another 170K reviews. We refer to this subset from the full dataset as AISIA-VN-Review-S. It is important to emphasize that our team spends a lot of time and effort to manually classify each review into positive or negative sentiments.
1 PAPER • NO BENCHMARKS YET
Sentiment detection remains a pivotal task in natural language processing, yet its development in Arabic lags due to a scarcity of training materials compared to English. Addressing this gap, we present ArSen-20, a benchmark dataset tailored to propel Arabic sentiment detection forward. ArSen-20 comprises 20,000 professionally labeled tweets sourced from Twitter, focusing on the theme of COVID-19 and spanning the period from 2020 to 2023. Beyond tweet content, the dataset incorporates metadata associated with the user, enriching the contextual understanding. ArSen-20 offers a comprehensive resource to foster advancements in Arabic sentiment analysis and facilitate research in this critical domain.
This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.
This dataset is based on the movie review polarity dataset (v2.0) collected and maintained by Bo Pang and Lillian Lee. Their dataset (we'll call it PL2.0) consists of 1000 positive and 1000 negative movie reviews obtained from the Internet Movie Database (IMDb) review archive.
"My ridiculous dog is amazing." [sentiment: positive]