Indian Pines is a Hyperspectral image segmentation dataset. The input data consists of hyperspectral bands over a single landscape in Indiana, US, (Indian Pines data set) with 145×145 pixels. For each pixel, the data set contains 220 spectral reflectance bands which represent different portions of the electromagnetic spectrum in the wavelength range 0.4−2.5⋅10−6.
78 PAPERS • 2 BENCHMARKS
The Pavia University dataset is a hyperspectral image dataset which gathered by a sensor known as the reflective optics system imaging spectrometer (ROSIS-3) over the city of Pavia, Italy. The image consists of 610×340 pixels with 115 spectral bands. The image is divided into 9 classes with a total of 42,776 labelled samples, including the asphalt, meadows, gravel, trees, metal sheet, bare soil, bitumen, brick, and shadow.
39 PAPERS • 1 BENCHMARK
Kennedy Space Center is a dataset for the classification of wetland vegetation at the Kennedy Space Center, Florida using hyperspectral imagery. Hyperspectral data were acquired over KSC on March 23, 1996 using JPL's Airborne Visible/Infrared Imaging Spectrometer.
16 PAPERS • 1 BENCHMARK
Salinas Scene is a hyperspectral dataset collected by the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by high spatial resolution (3.7-meter pixels). The area covered comprises 512 lines by 217 samples. 20 water absorption bands were discarder: [108-112], [154-167], 224. This image was available only as at-sensor radiance data. It includes vegetables, bare soils, and vineyard fields. Salinas groundtruth contains 16 classes.
12 PAPERS • 3 BENCHMARKS
Houston is a hyperspectral image classification dataset. The hyperspectral imagery consists of 144 spectral bands in the 380 nm to 1050 nm region and has been calibrated to at-sensor spectral radiance units, SRU =$ \mu \text{W} /( \text{cm}^2 \text{ sr nm})$. The corresponding co-registered DSM consists of elevation in meters above sea level (per the Geoid 2012A model).
5 PAPERS • 1 BENCHMARK
Botswana is a hyperspectral image classification dataset. The NASA EO-1 satellite acquired a sequence of data over the Okavango Delta, Botswana in 2001-2004. The Hyperion sensor on EO-1 acquires data at 30 m pixel resolution over a 7.7 km strip in 242 bands covering the 400-2500 nm portion of the spectrum in 10 nm windows. Preprocessing of the data was performed by the UT Center for Space Research to mitigate the effects of bad detectors, inter-detector miscalibration, and intermittent anomalies. Uncalibrated and noisy bands that cover water absorption features were removed, and the remaining 145 bands were included as candidate features: [10-55, 82-97, 102-119, 134-164, 187-220]. The data analyzed in this study, acquired May 31, 2001, consist of observations from 14 identified classes representing the land cover types in seasonal swamps, occasional swamps, and drier woodlands located in the distal portion of the Delta.
4 PAPERS • 1 BENCHMARK
WHU-Hi dataset (Wuhan UAV-borne hyperspectral image) is collected and shared by the RSIDEA research group of Wuhan University, and it could serve as a benchmark dataset for precise crop classification and hyperspectral image classification studies. The WHU-Hi dataset contains three individual UAV-borne hyperspectral datasets: WHU-Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu. All the datasets were acquired in farming areas with various crop types in Hubei province, China, via a Headwall Nano-Hyperspec sensor mounted on a UAV platform. Compared with spaceborne and airborne hyperspectral platforms, unmanned aerial vehicle (UAV)-borne hyperspectral systems can acquire hyperspectral imagery with a high spatial resolution (which we refer to here as H2 imagery). The research was published in Remote Sensing of Environment.
2 PAPERS • NO BENCHMARKS YET
The LIB-HSI dataset contains hyperspectral reflectance images and their corresponding RGB images of building façades in a light industrial environment. The dataset also contains pixel-level annotated images for each hyperspectral/RGB image. The LIB-HSI dataset was created to develop deep learning methods for segmenting building facade materials.
1 PAPER • NO BENCHMARKS YET