The CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. The images are labelled with one of 10 mutually exclusive classes: airplane, automobile (but not truck or pickup truck), bird, cat, deer, dog, frog, horse, ship, and truck (but not pickup truck). There are 6000 images per class with 5000 training and 1000 testing images per class.
14,087 PAPERS • 98 BENCHMARKS
The CIFAR-100 dataset (Canadian Institute for Advanced Research, 100 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. There are 600 images per class. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). There are 500 training images and 100 testing images per class.
7,653 PAPERS • 52 BENCHMARKS
CelebFaces Attributes dataset contains 202,599 face images of the size 178×218 from 10,177 celebrities, each annotated with 40 binary labels indicating facial attributes like hair color, gender and age.
3,083 PAPERS • 20 BENCHMARKS
The Kinetics dataset is a large-scale, high-quality dataset for human action recognition in videos. The dataset consists of around 500,000 video clips covering 600 human action classes with at least 600 video clips for each action class. Each video clip lasts around 10 seconds and is labeled with a single action class. The videos are collected from YouTube.
1,180 PAPERS • 28 BENCHMARKS
The iNaturalist 2017 dataset (iNat) contains 675,170 training and validation images from 5,089 natural fine-grained categories. Those categories belong to 13 super-categories including Plantae (Plant), Insecta (Insect), Aves (Bird), Mammalia (Mammal), and so on. The iNat dataset is highly imbalanced with dramatically different number of images per category. For example, the largest super-category “Plantae (Plant)” has 196,613 images from 2,101 categories; whereas the smallest super-category “Protozoa” only has 381 images from 4 categories.
496 PAPERS • 12 BENCHMARKS
ImageNet Long-Tailed is a subset of /dataset/imagenet dataset consisting of 115.8K images from 1000 categories, with maximally 1280 images per class and minimally 5 images per class. The additional classes of images in ImageNet-2010 are used as the open set.
189 PAPERS • 3 BENCHMARKS
Extended GTEA Gaze+ EGTEA Gaze+ is a large-scale dataset for FPV actions and gaze. It subsumes GTEA Gaze+ and comes with HD videos (1280x960), audios, gaze tracking data, frame-level action annotations, and pixel-level hand masks at sampled frames. Specifically, EGTEA Gaze+ contains 28 hours (de-identified) of cooking activities from 86 unique sessions of 32 subjects. These videos come with audios and gaze tracking (30Hz). We have further provided human annotations of actions (human-object interactions) and hand masks.
80 PAPERS • NO BENCHMARKS YET
Places-LT has an imbalanced training set with 62,500 images for 365 classes from Places-2. The class frequencies follow a natural power law distribution with a maximum number of 4,980 images per class and a minimum number of 5 images per class. The validation and testing sets are balanced and contain 20 and 100 images per class respectively.
74 PAPERS • 1 BENCHMARK
Animal Kingdom is a large and diverse dataset that provides multiple annotated tasks to enable a more thorough understanding of natural animal behaviors. The wild animal footage used in the dataset records different times of the day in an extensive range of environments containing variations in backgrounds, viewpoints, illumination and weather conditions. More specifically, the dataset contains 50 hours of annotated videos to localize relevant animal behavior segments in long videos for the video grounding task, 30K video sequences for the fine-grained multi-label action recognition task, and 33K frames for the pose estimation task, which correspond to a diverse range of animals with 850 species across 6 major animal classes.
14 PAPERS • 2 BENCHMARKS
The COCO-MLT is created from MS COCO-2017, containing 1,909 images from 80 classes. The maximum of training number per class is 1,128 and the minimum is 6. We use the test set of COCO2017 with 5,000 for evaluation. The ratio of head, medium, and tail classes is 22:33:25 in COCO-MLT.
12 PAPERS • 2 BENCHMARKS
We construct the long-tailed version of VOC from its 2012 train-val set. It contains 1,142 images from 20 classes, with a maximum of 775 images per class and a minimum of 4 images per class. The ratio of head, medium, and tail classes after splitting is 6:6:8. We evaluate the performance on VOC2007 test set with 4952 images.
MIMIC-CXR-LT. We construct a single-label, long-tailed version of MIMIC-CXR in a similar manner. MIMIC-CXR is a multi-label classification dataset with over 200,000 chest X-rays labeled with 13 pathologies and a “No Findings” class. The resulting MIMIC-CXR-LT dataset contains 19 classes, of which 10 are head classes, 6 are medium classes, and 3 are tail classes. MIMIC-CXR-LT contains 111,792 images labeled with one of 18 diseases, with 87,493 training images and 23,550 test set images. The validation and balanced test sets contain 15 and 30 images per class, respectively.
2 PAPERS • 1 BENCHMARK
NIH-CXR-LT. NIH ChestXRay14 contains over 100,000 chest X-rays labeled with 14 pathologies, plus a “No Findings” class. We construct a single-label, long-tailed version of the NIH ChestXRay14 dataset by introducing five new disease findings described above. The resulting NIH-CXR-LT dataset has 20 classes, including 7 head classes, 10 medium classes, and 3 tail classes. NIH-CXR-LT contains 88,637 images labeled with one of 19 thorax diseases, with 68,058 training and 20,279 test images. The validation and balanced test sets contain 15 and 30 images per class, respectively.
mini-ImageNet was proposed by Matching networks for one-shot learning for few-shot learning evaluation, in an attempt to have a dataset like ImageNet while requiring fewer resources. Similar to the statistics for CIFAR-100-LT with an imbalance factor of 100, we construct a long-tailed variant of mini-ImageNet that features all the 100 classes and an imbalanced training set with $N_1 = 500$ and $N_K = 5$ images. For evaluation, both the validation and test sets are balanced and contain 10K images, 100 samples for each of the 100 categories.
Imbalanced-MiniKinetics200 was proposed by "Minority-Oriented Vicinity Expansion with Attentive Aggregation for Video Long-Tailed Recognition" to evaluate varying scenarios of video long-tailed recognition. Similar to CIFAR-10/100-LT, it utilizes an imbalance factor to construct long-tailed variants of the MiniKinetics200 dataset. Imbalanced-MiniKinetics200 is a subset of Mini-Kinetics-200 consisting of 200 categories which is also a subset of Kinetics400. Both the raw frames and extracted features with ResNet50/101 are provided.
1 PAPER • NO BENCHMARKS YET
LoT-insts contains over 25k classes whose frequencies are naturally long-tail distributed. Its test set from four different subsets: many-, medium-, and few-shot sets, as well as a zero-shot open set. To our best knowledge, this is the first natural language dataset that focuses on this long-tailed and open classification problem.
1 PAPER • 2 BENCHMARKS