ShapeNet is a large scale repository for 3D CAD models developed by researchers from Stanford University, Princeton University and the Toyota Technological Institute at Chicago, USA. The repository contains over 300M models with 220,000 classified into 3,135 classes arranged using WordNet hypernym-hyponym relationships. ShapeNet Parts subset contains 31,693 meshes categorised into 16 common object classes (i.e. table, chair, plane etc.). Each shapes ground truth contains 2-5 parts (with a total of 50 part classes).
1,689 PAPERS • 13 BENCHMARKS
BEHAVE is a full body human-object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them. Dataset contains ~15k frames at 5 locations with 8 subjects performing a wide range of interactions with 20 common objects.
33 PAPERS • 3 BENCHMARKS
X3D is a dataset containing 15 scenes and covering 4 applications for X-ray 3D reconstruction. More specifically, the X3D dataset includes the scenes of (1) medicine: jaw, leg, chest, foot, abdomen, aneurism, pelvis, pancreas, head (2) biology: carp, bonsai (3) security: box, backpack (4) industry: engine, teapot
7 PAPERS • 2 BENCHMARKS
Synthetic dataset of over 13,000 images of damaged and intact parcels with full 2D and 3D annotations in the COCO format. For details see our paper and for visual samples our project page.
2 PAPERS • NO BENCHMARKS YET
This dataset contains a collection of 131 X-ray CT scans of pieces of modeling clay (Play-Doh) with various numbers of stones inserted, retrieved in the FleX-ray lab at CWI. The dataset consists of 5 parts. It is intended as raw supplementary material to reproduce the CT reconstructions and subsequent results in the paper titled "A tomographic workflow enabling deep learning for X-ray based foreign object detection". The dataset can be used to set up other CT-based experiments concerning similar objects with variations in shape and composition.
1 PAPER • NO BENCHMARKS YET
The RBO dataset of articulated objects and interactions is a collection of 358 RGB-D video sequences (67:18 minutes) of humans manipulating 14 articulated objects under varying conditions (light, perspective, background, interaction). All sequences are annotated with ground truth of the poses of the rigid parts and the kinematic state of the articulated object (joint states) obtained with a motion capture system. We also provide complete kinematic models of these objects (kinematic structure and three-dimensional textured shape models). In 78 sequences the contact wrenches during the manipulation are also provided.
This dataset is the images of corn seeds considering the top and bottom view independently (two images for one corn seed: top and bottom). There are four classes of the corn seed (Broken-B, Discolored-D, Silkcut-S, and Pure-P) 17802 images are labeled by the experts at the AdTech Corp. and 26K images were unlabeled out of which 9k images were labeled using the Active Learning (BatchBALD)
0 PAPER • NO BENCHMARKS YET