The Digital Retinal Images for Vessel Extraction (DRIVE) dataset is a dataset for retinal vessel segmentation. It consists of a total of JPEG 40 color fundus images; including 7 abnormal pathology cases. The images were obtained from a diabetic retinopathy screening program in the Netherlands. The images were acquired using Canon CR5 non-mydriatic 3CCD camera with FOV equals to 45 degrees. Each image resolution is 584*565 pixels with eight bits per color channel (3 channels).
275 PAPERS • 2 BENCHMARKS
Kvasir-SEG is an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist.
140 PAPERS • 3 BENCHMARKS
The KVASIR Dataset was released as part of the medical multimedia challenge presented by MediaEval. It is based on images obtained from the GI tract via an endoscopy procedure. The dataset is composed of images that are annotated and verified by medical doctors, and captures 8 different classes. The classes are based on three anatomical landmarks (z-line, pylorus, cecum), three pathological findings (esophagitis, polyps, ulcerative colitis) and two other classes (dyed and lifted polyps, dyed resection margins) related to the polyp removal process. Overall, the dataset contains 8,000 endoscopic images, with 1,000 image examples per class.
85 PAPERS • 3 BENCHMARKS
The dataset used in this challenge consists of 165 images derived from 16 H&E stained histological sections of stage T3 or T42 colorectal adenocarcinoma. Each section belongs to a different patient, and sections were processed in the laboratory on different occasions. Thus, the dataset exhibits high inter-subject variability in both stain distribution and tissue architecture. The digitization of these histological sections into whole-slide images (WSIs) was accomplished using a Zeiss MIRAX MIDI Slide Scanner with a pixel resolution of 0.465µm.
83 PAPERS • 1 BENCHMARK
The Medical Segmentation Decathlon is a collection of medical image segmentation datasets. It contains a total of 2,633 three-dimensional images collected across multiple anatomies of interest, multiple modalities and multiple sources. Specifically, it contains data for the following body organs or parts: Brain, Heart, Liver, Hippocampus, Prostate, Lung, Pancreas, Hepatic Vessel, Spleen and Colon.
79 PAPERS • 1 BENCHMARK
The PROMISE12 dataset was made available for the MICCAI 2012 prostate segmentation challenge. Magnetic Resonance (MR) images (T2-weighted) of 50 patients with various diseases were acquired at different locations with several MRI vendors and scanning protocols.
72 PAPERS • 1 BENCHMARK
Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under
51 PAPERS • 1 BENCHMARK
CHASE_DB1 is a dataset for retinal vessel segmentation which contains 28 color retina images with the size of 999×960 pixels which are collected from both left and right eyes of 14 school children. Each image is annotated by two independent human experts.
48 PAPERS • 2 BENCHMARKS
The goal of the Automated Cardiac Diagnosis Challenge (ACDC) challenge is to:
39 PAPERS • 5 BENCHMARKS
This dataset contains a large number of segmented nuclei images. The images were acquired under a variety of conditions and vary in the cell type, magnification, and imaging modality (brightfield vs. fluorescence). The dataset is designed to challenge an algorithm's ability to generalize across these variations.
38 PAPERS • 1 BENCHMARK
CVC-ClinicDB is an open-access dataset of 612 images with a resolution of 384×288 from 31 colonoscopy sequences.It is used for medical image segmentation, in particular polyp detection in colonoscopy videos.
LiTS17 is a liver tumor segmentation benchmark. The data and segmentations are provided by various clinical sites around the world. The training data set contains 130 CT scans and the test data set 70 CT scans. Image Source: https://arxiv.org/pdf/1707.07734.pdf
38 PAPERS • 3 BENCHMARKS
Introduced by Da et al. in DigestPath: a Benchmark Dataset with Challenge Review for the Pathological Detection and Segmentation of Digestive-System
22 PAPERS • 1 BENCHMARK
Under Institutional Review Board (IRB) supervision, 50 abdomen CT scans of were randomly selected from a combination of an ongoing colorectal cancer chemotherapy trial, and a retrospective ventral hernia study. The 50 scans were captured during portal venous contrast phase with variable volume sizes (512 x 512 x 85 - 512 x 512 x 198) and field of views (approx. 280 x 280 x 280 mm3 - 500 x 500 x 650 mm3). The in-plane resolution varies from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2, while the slice thickness ranges from 2.5 mm to 5.0 mm. The standard registration data was generated by NiftyReg.
21 PAPERS • 3 BENCHMARKS
WORD is a dataset for organ semantic segmentation that contains 150 abdominal CT volumes (30,495 slices) and each volume has 16 organs with fine pixel-level annotations and scribble-based sparse annotation, which may be the largest dataset with whole abdominal organs annotation.
20 PAPERS • NO BENCHMARKS YET
MosMedData contains anonymised human lung computed tomography (CT) scans with COVID-19 related findings, as well as without such findings. A small subset of studies has been annotated with binary pixel masks depicting regions of interests (ground-glass opacifications and consolidations). CT scans were obtained between 1st of March, 2020 and 25th of April, 2020, and provided by municipal hospitals in Moscow, Russia.
19 PAPERS • 1 BENCHMARK
**CrossMoDA is a large and multi-class benchmark for unsupervised cross-modality Domain Adaptation. The goal of the challenge is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are commonly performed using contrast-enhanced T1 (ceT1) MR imaging.
16 PAPERS • NO BENCHMARKS YET
Consists of annotated frames containing GI procedure tools such as snares, balloons and biopsy forceps, etc. Beside of the images, the dataset includes ground truth masks and bounding boxes and has been verified by two expert GI endoscopists.
13 PAPERS • 3 BENCHMARKS
The CELL benchmark is made of fluorescence microscopy images of cell.
12 PAPERS • 3 BENCHMARKS
HyperKvasir dataset contains 110,079 images and 374 videos where it captures anatomical landmarks and pathological and normal findings. A total of around 1 million images and video frames altogether.
10 PAPERS • 2 BENCHMARKS
We release expert-made scribble annotations for the medical ACDC dataset 1. The released data must be considered as extending the original ACDC dataset. The ACDC dataset contains cardiac MRI images, paired with hand-made segmentation masks. It is possible to use the segmentation masks provided in the ACDC dataset to evaluate the performance of methods trained using only scribble supervision.
9 PAPERS • 1 BENCHMARK
This dataset contains 1200 images (1000 WLI images and 200 FICE images) with fine-grained segmentation annotations. The training set consists of 1000 images, and the test set consists of 200 images. All polyps are classified into neoplastic or non-neoplastic classes denoted by red and green colors, respectively. This dataset is a part of a bigger dataset called NeoPolyp.
7 PAPERS • 1 BENCHMARK
The dataset for this challenge was obtained by carefully annotating tissue images of several patients with tumors of different organs and who were diagnosed at multiple hospitals. This dataset was created by downloading H&E stained tissue images captured at 40x magnification from TCGA archive. H&E staining is a routine protocol to enhance the contrast of a tissue section and is commonly used for tumor assessment (grading, staging, etc.). Given the diversity of nuclei appearances across multiple organs and patients, and the richness of staining protocols adopted at multiple hospitals, the training datatset will enable the development of robust and generalizable nuclei segmentation techniques that will work right out of the box.
ARCADE: Automatic Region-based Coronary Artery Disease diagnostics using x-ray angiography imagEs Dataset Phase 2 consist of two folders with 300 images in each of them as well as annotations.
5 PAPERS • 2 BENCHMARKS
MyoPS is a dataset for myocardial pathology segmentation combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segment
5 PAPERS • NO BENCHMARKS YET
This brain anatomy segmentation dataset has 1300 2D US scans for training and 329 for testing. A total of 1629 in vivo B-mode US images were obtained from 20 different subjects (age<1 years old) who were treated between 2010 and 2016. The dataset contained subjects with IVH and without (healthy subjects but in risk of developing IVH). The US scans were collected using a Philips US machine with a C8-5 broadband curved array transducer using coronal and sagittal scan planes. For every collected image ventricles and septum pellecudi are manually segmented by an expert ultrasonographer. We split these images randomly into 1300 Training images and 329 Testing images for experiments. Note that these images are of size 512 × 512.
4 PAPERS • 1 BENCHMARK
The Kvasir-SEG dataset includes 196 polyps smaller than 10 mm classified as Paris class 1 sessile or Paris class IIa. We have selected it with the help of expert gastroenterologists. We have released this dataset separately as a subset of Kvasir-SEG. We call this subset Kvasir-Sessile.
The RITE (Retinal Images vessel Tree Extraction) is a database that enables comparative studies on segmentation or classification of arteries and veins on retinal fundus images, which is established based on the public available DRIVE database (Digital Retinal Images for Vessel Extraction).
4 PAPERS • 2 BENCHMARKS
The dataset contains a Video capsule endoscopy dataset for polyp segmentation.
3 PAPERS • 1 BENCHMARK
The “Medico automatic polyp segmentation challenge” aims to develop computer-aided diagnosis systems for automatic polyp segmentation to detect all types of polyps (for example, irregular polyp, smaller or flat polyps) with high efficiency and accuracy. The main goal of the challenge is to benchmark semantic segmentation algorithms on a publicly available dataset, emphasizing robustness, speed, and generalization.
The Vocal Folds dataset is a dataset for automatic segmentation of laryngeal endoscopic images. The dataset consists of 8 sequences from 2 patients containing 536 hand segmented in vivo colour images of the larynx during two different resection interventions with a resolution of 512x512 pixels.
3 PAPERS • NO BENCHMARKS YET
A challenge that consists of three tasks, each targeting a different requirement for in-clinic use. The first task involves classifying images from the GI tract into 23 distinct classes. The second task focuses on efficiant classification measured by the amount of time spent processing each image. The last task relates to automatcially segmenting polyps.
2 PAPERS • 1 BENCHMARK
Fetoscopic Placental Vessel Segmentation and Registration (FetReg) is a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
2 PAPERS • NO BENCHMARKS YET
The fetoscopy placenta dataset is associated with our MICCAI2020 publication titled “Deep Placental Vessel Segmentation for Fetoscopic Mosaicking”. The dataset contains 483 frames with ground-truth vessel segmentation annotations taken from six different in vivo fetoscopic procedure videos. The dataset also includes six unannotated in vivo continuous fetoscopic video clips (950 frames) with predicted vessel segmentation maps obtained from the leave-one-out cross-validation of our method.
Automated measurement of fetal head circumference using 2D ultrasound images
This database is provided and maintained by Dr. Gregory C Sharp (Harvard Medical School – MGH, Boston) and his group.
Several datasets are fostering innovation in higher-level functions for everyone, everywhere. By providing this repository, we hope to encourage the research community to focus on hard problems. In this repository, we present our medical imaging DICOM files of patients from our User Tests and Analysis 4 (UTA4) study. Here, we provide a dataset of the used medical images during the UTA4 tasks. This repository and respective dataset should be paired with the dataset-uta4-rates repository dataset. Work and results are published on a top Human-Computer Interaction (HCI) conference named AVI 2020 (page). Results were analyzed and interpreted on our Statistical Analysis charts. The user tests were made in clinical institutions, where clinicians diagnose several patients for a Single-Modality vs Multi-Modality comparison. For example, in these tests, we used both prototype-single-modality and prototype-multi-modality repositories for the comparison. On the same hand, the hereby dataset repres
1 PAPER • 1 BENCHMARK
CheXlocalize is a radiologist-annotated segmentation dataset on chest X-rays. The dataset consists of two types of radiologist annotations for the localization of 10 pathologies: pixel-level segmentations and most-representative points. Annotations were drawn on images from the CheXpert validation and test sets. The dataset also consists of two separate sets of radiologist annotations: (1) ground-truth pixel-level segmentations on the validation and test sets, drawn by two board-certified radiologists, and (2) benchmark pixel-level segmentations and most-representative points on the test set, drawn by a separate group of three board-certified radiologists.
1 PAPER • NO BENCHMARKS YET
A dataset of A 3D Computed Tomography (CT) image dataset, ImageTBAD, for segmentation of Type-B Aortic Dissection is published. ImageTBAD contains 100 3D Computed Tomography (CT) images, which is of decent size compared with existing medical imaging datasets.
Different types of cells play a vital role in the initiation, development, invasion, metastasis and therapeutic response of tumors of various organs. For example, (1) most carcinomas originate from epithelial cells, (2) spatial arrangement of tumor infiltrating Lymphocytes (TILs) is associated with clinical outcome in several cancers, including the ones of breast, prostate, and lung (Fridman et. al., Nature Reviews Cancer, 2012), and (3) tumor associated macrophages (TAMs) influence diverse processes such as angiogenesis, neoplastic cell mitogenesis, antigen presentation, matrix degradation, and cytotoxicity in various tumors (Ruffel and Coussens, Cancer Cell, 2015). Thus, accurate identification and segmentation of nuclei of multiple cell-types is important for AI enabled characterization of tumor and its microenvironment.
This dataset was built with data acquired at the Hospital Clinic of Barcelona, Spain. It is composed of a total of 1126 HD polyp images. There are a total of 473 unique polyps, with a variable number of different shots per polyp (minimum: 2, maximum: 24, median: 10). Special attention was paid to ensure that images from the same polyp show different conditions. An external frame-grabber and a white light endoscope were used to capture raw images. The dataset contains images with two different resolutions: 1920 x 1080 and 1350 x 1080.
A dataset made of 3D image data and their embeddings to test TomoSAM
Highlights
0 PAPER • NO BENCHMARKS YET