Market-1501 is a large-scale public benchmark dataset for person re-identification. It contains 1501 identities which are captured by six different cameras, and 32,668 pedestrian image bounding-boxes obtained using the Deformable Part Models pedestrian detector. Each person has 3.6 images on average at each viewpoint. The dataset is split into two parts: 750 identities are utilized for training and the remaining 751 identities are used for testing. In the official testing protocol 3,368 query images are selected as probe set to find the correct match across 19,732 reference gallery images.
812 PAPERS • 9 BENCHMARKS
The DukeMTMC-reID (Duke Multi-Tracking Multi-Camera ReIDentification) dataset is a subset of the DukeMTMC for image-based person re-ID. The dataset is created from high-resolution videos from 8 different cameras. It is one of the largest pedestrian image datasets wherein images are cropped by hand-drawn bounding boxes. The dataset consists 16,522 training images of 702 identities, 2,228 query images of the other 702 identities and 17,661 gallery images.
326 PAPERS • 6 BENCHMARKS
MSMT17 is a multi-scene multi-time person re-identification dataset. The dataset consists of 180 hours of videos, captured by 12 outdoor cameras, 3 indoor cameras, and during 12 time slots. The videos cover a long period of time and present complex lighting variations, and it contains a large number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes.
237 PAPERS • 6 BENCHMARKS
MARS (Motion Analysis and Re-identification Set) is a large scale video based person reidentification dataset, an extension of the Market-1501 dataset. It has been collected from six near-synchronized cameras. It consists of 1,261 different pedestrians, who are captured by at least 2 cameras. The variations in poses, colors and illuminations of pedestrians, as well as the poor image quality, make it very difficult to yield high matching accuracy. Moreover, the dataset contains 3,248 distractors in order to make it more realistic. Deformable Part Model and GMMCP tracker were used to automatically generate the tracklets (mostly 25-50 frames long).
169 PAPERS • 2 BENCHMARKS
The DukeMTMC-VideoReID (Duke Multi-Tracking Multi-Camera Video-based ReIDentification) dataset is a subset of the DukeMTMC for video-based person re-ID. The dataset is created from high-resolution videos from 8 different cameras. It is one of the largest pedestrian video datasets wherein images are cropped by hand-drawn bounding boxes. The dataset consists 4832 tracklets of 1812 identities in total, and each tracklet has 168 frames on average.
48 PAPERS • 2 BENCHMARKS
This dataset consists of 33698 images from 221 identities. Each person in Cameras A and B is wearing the same clothes, but the images are captured in different rooms. For Camera C, the person wears different clothes, and the images are captured in a different day.
31 PAPERS • 2 BENCHMARKS
LTCC contains 17,119 person images of 152 identities, and each identity is captured by at least two cameras. The dataset can be divided into two subsets: one cloth-change set where 91 persons appear with 416 different sets of outfits in 14,783 images, and one cloth-consistent subset containing the remaining 61 identities with 2,336 images without outfit changes. On average, there are 5 different clothes for each cloth-changing person, with the number of outfit changes ranging from 2 to 14.
26 PAPERS • 2 BENCHMARKS
The iLIDS-VID dataset is a person re-identification dataset which involves 300 different pedestrians observed across two disjoint camera views in public open space. It comprises 600 image sequences of 300 distinct individuals, with one pair of image sequences from two camera views for each person. Each image sequence has variable length ranging from 23 to 192 image frames, with an average number of 73. The iLIDS-VID dataset is very challenging due to clothing similarities among people, lighting and viewpoint variations across camera views, cluttered background and random occlusions.
19 PAPERS • 2 BENCHMARKS
PRID 2011 is a person reidentification dataset that provides multiple person trajectories recorded from two different static surveillance cameras, monitoring crosswalks and sidewalks. The dataset shows a clean background, and the people in the dataset are rarely occluded. In the dataset, 200 people appear in both views. Among the 200 people, 178 people have more than 20 appearances
18 PAPERS • 2 BENCHMARKS
Person re-identification (Reid) is now an active research topic for AI-based video surveillance applications such as specific person search, but the practical issue that the target person(s) may change clothes (clothes inconsistency problem) has been overlooked for long. For the first time, this paper systematically studies this problem. We first overcome the difficulty of lack of suitable dataset, by collecting a small yet representative real dataset for testing whilst building a large realistic synthetic dataset for training and deeper studies. Facilitated by our new datasets, we are able to conduct various interesting new experiments for studying the influence of clothes inconsistency. We find that changing clothes makes Reid a much harder problem in the sense of bringing difficulties to learning effective representations and also challenges the generalization ability of previous Reid models to identify persons with unseen (new) clothes. Representative existing Reid models are adopt
14 PAPERS • 1 BENCHMARK
The ClonedPerson dataset is a large-scale synthetic person re-identification dataset introduced in the paper "Cloning Outfits from Real-World Images to 3D Characters for Generalizable Person Re-Identification" in CVPR 2022. It is generated by MakeHuman and Unity3D. Characters in this dataset use an automatic approach to directly clone the whole outfits from real-world person images to virtual 3D characters, such that any virtual person thus created will appear very similar to its real-world counterpart. The dataset contains 887,766 synthesized person images of 5,621 identities.
4 PAPERS • 4 BENCHMARKS