MIT licenseDPCSpell-Bangla-SEC-Corpus is a large-scale parallel corpus for Bangla spelling error correction.
4 PAPERS • 1 BENCHMARK
The dataset contains a total of 253,070 records, with 18 features. The features are categorized into four different types: Metadata, Primary Data, Engagement Stats, and Label. Under the Metadata category contains basic information about the channel and video, such as their unique identifiers, date and time of publication, and thumbnail URLs. The Primary Data category contains information about the title and description of the video. The "Processed" columns refer to the cleaned data after denoising, deduplication and debiased for further analysis. The Engagement Stats category contains data on user engagement metrics for each video. The Label category contains predefined auto labels, human annotated labels, and AI generated pseudo labels. Auto labels are labels that are automatically derived based on a review of their titles, descriptions, and thumbnails over time. Channels with consistently misleading, exaggerated, or sensationalized content were labeled as clickbait. Those focusing on
1 PAPER • NO BENCHMARKS YET
Digitally Generated Numerals (DIGITal) Description The Digitally Generated Numerals (DIGITal) dataset consists of 100,000 image pairs representing digits from 0 to 9. These image pairs include both low and high-quality versions, with a resolution of 128x128 pixels.
MatriVasha the largest dataset of handwritten Bangla compound characters for research on handwritten Bangla compound character recognition. The proposed dataset contains 120 different types of compound characters that consist of 306,464 images written where 152,950 male and 153,514 female handwritten Bangla compound characters. This dataset can be used for other issues such as gender, age, district base handwriting research because the sample was collected that included district authenticity, age group, and an equal number of men and women.