AGORA is a synthetic human dataset with high realism and accurate ground truth. It consists of around 14K training and 3K test images by rendering between 5 and 15 people per image using either image-based lighting or rendered 3D environments, taking care to make the images physically plausible and photoreal. In total, AGORA contains 173K individual person crops. AGORA provides (1) SMPL/SMPL-X parameters and (2) segmentation masks for each subject in images.
55 PAPERS • 4 BENCHMARKS
BEDLAM is a large-scale synthetic video dataset designed to train and test algorithms on the task of 3D human pose and shape estimation (HPS). It contains diverse body shapes, skin tones, and motions. The clothing is realistically simulated on the moving bodies using commercial clothing physics simulation.
17 PAPERS • NO BENCHMARKS YET
SSP-3D is an evaluation dataset consisting of 311 images of sportspersons in tight-fitted clothes, with a variety of body shapes and poses. The images were collected from the Sports-1M dataset. SSP-3D is intended for use as a benchmark for body shape prediction methods. Pseudo-ground-truth 3D shape labels (using the SMPL body model) were obtained via multi-frame optimisation with shape consistency between frames, as described here.
14 PAPERS • 1 BENCHMARK
Contains 60 female and 30 male actors performing a collection of 20 predefined everyday actions and sports movements, and one self-chosen movement.
10 PAPERS • 1 BENCHMARK
HUMAN4D is a large and multimodal 4D dataset that contains a variety of human activities simultaneously captured by a professional marker-based MoCap, a volumetric capture and an audio recording system. By capturing 2 female and $2$ male professional actors performing various full-body movements and expressions, HUMAN4D provides a diverse set of motions and poses encountered as part of single- and multi-person daily, physical and social activities (jumping, dancing, etc. ), along with multi-RGBD (mRGBD), volumetric and audio data.
8 PAPERS • NO BENCHMARKS YET
Human Bodies in the Wild (HBW) is a validation and test set for body shape estimation. It consists of images taken in the wild and ground truth 3D body scans in SMPL-X topology. To create HBW, we collect body scans of 35 participants and register the SMPL-X model to the scans. Further each participant is photographed in various outfits and poses in front of a white background and uploads full-body photos of themselves taken in the wild. The validation and test set images are released. The ground truth shape is only released for the validation set.
4 PAPERS • NO BENCHMARKS YET
The University of Padova Body Pose Estimation dataset (UNIPD-BPE) is an extensive dataset for multi-sensor body pose estimation containing both single-person and multi-person sequences with up to 4 interacting people A network with 5 Microsoft Azure Kinect RGB-D cameras is exploited to record synchronized high-definition RGB and depth data of the scene from multiple viewpoints, as well as to estimate the subjects’ poses using the Azure Kinect Body Tracking SDK. Simultaneously, full-body Xsens MVN Awinda inertial suits allow obtaining accurate poses and anatomical joint angles, while also providing raw data from the 17 IMUs required by each suit. All the cameras and inertial suits are hardware synchronized, while the relative poses of each camera with respect to the inertial reference frame are calibrated before each sequence to ensure maximum overlap of the two sensing systems outputs.
0 PAPER • NO BENCHMARKS YET