Disease Prediction
51 papers with code • 0 benchmarks • 0 datasets
Benchmarks
These leaderboards are used to track progress in Disease Prediction
Most implemented papers
A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks
In this paper, we apply a new promising tool for pattern classification, namely, the Tsetlin Machine (TM), to the field of disease forecasting.
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up
TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease.
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection
However, existing unsupervised representation learning methods mainly focus on preserving the data regularity information and learning the representations independently of subsequent outlier detection methods, which can result in suboptimal and unstable performance of detecting irregularities (i. e., outliers).
Naive Bayes and Text Classification I - Introduction and Theory
Naive Bayes classifiers, a family of classifiers that are based on the popular Bayes' probability theorem, are known for creating simple yet well performing models, especially in the fields of document classification and disease prediction.
Multi-Disease Detection in Retinal Imaging based on Ensembling Heterogeneous Deep Learning Models
Preventable or undiagnosed visual impairment and blindness affect billion of people worldwide.
VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers
The only non-invasive method for capturing retinal vasculature is optical coherence tomography-angiography (OCTA).
Unsupervised Pre-Training on Patient Population Graphs for Patient-Level Predictions
We test our method on two medical datasets of patient records, TADPOLE and MIMIC-III, including imaging and non-imaging features and different prediction tasks.
Heart Disease Prediction System using Associative Classification and Genetic Algorithm
Associative classifiers are especially fit to applications where maximum accuracy is desired to a model for prediction.
Spectral Graph Convolutions for Population-based Disease Prediction
We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks.
Robust Multiple Kernel k-means Clustering using Min-Max Optimization
To address this problem and inspired by recent works in adversarial learning, we propose a multiple kernel clustering method with the min-max framework that aims to be robust to such adversarial perturbation.