Penn Treebank

Introduced by Mitchell P. Marcus et al. in Building a Large Annotated Corpus of English: The Penn Treebank

The English Penn Treebank (PTB) corpus, and in particular the section of the corpus corresponding to the articles of Wall Street Journal (WSJ), is one of the most known and used corpus for the evaluation of models for sequence labelling. The task consists of annotating each word with its Part-of-Speech tag. In the most common split of this corpus, sections from 0 to 18 are used for training (38 219 sentences, 912 344 tokens), sections from 19 to 21 are used for validation (5 527 sentences, 131 768 tokens), and sections from 22 to 24 are used for testing (5 462 sentences, 129 654 tokens). The corpus is also commonly used for character-level and word-level Language Modelling.

Source: Seq2Biseq: Bidirectional Output-wise Recurrent Neural Networks for Sequence Modelling

Papers


Paper Code Results Date Stars

Tasks


Similar Datasets


License


Modalities


Languages